1 / 11

1 6 機器學習的應用

1 6 機器學習的應用. 機械系 洪振聰. An introduction to neural networks for beginners. By Dr Andy Thomas. Adventures in Machine Learning. https://ithelp.ithome.com.tw/articles/10191404. >cd Desktop >mkdir hiwin >cd hiwin >npm init >npm install express –save >npm install express-generator -g

desireeh
Download Presentation

1 6 機器學習的應用

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 16機器學習的應用 機械系 洪振聰 An introduction to neuralnetworks for beginners By Dr Andy Thomas Adventures in Machine Learning https://ithelp.ithome.com.tw/articles/10191404

  2. >cd Desktop >mkdir hiwin >cd hiwin >npm init >npm install express –save >npm install express-generator -g >express hiwinapp

  3. https://www.python.org/ftp/python/3.7.2/python-3.7.2.exe

  4. pip3 install --upgrade tensorflow

  5. 資料分析&機器學習 https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/1-1-B-NN/

  6. 圖. Machine Learning 框架(Framework)GitHub評比,資料來源:【AI關鍵技術】三大熱門深度學習框架新進展。 https://ithelp.ithome.com.tw/articles/10191404

  7. C:\Users\軒> pip install tensorflow

  8. Python Machine Learning Tutorial import numpy as np import matplotlib.pyplot as plt def sigma(x): return 1 / (1 + np.exp(-x)) X = np.linspace(-5, 5, 100) plt.plot(X, sigma(X),'b') plt.xlabel('X Axis') plt.ylabel('Y Axis') plt.title('Sigmoid Function') plt.grid() plt.text(4, 0.8, r'$\sigma(x)=\frac{1}{1+e^{-x}}$', fontsize=16) plt.show() https://www.python-course.eu/neural_networks_with_python_numpy.php

  9. 本單元結束

More Related