390 likes | 412 Views
This study focuses on spherical parameterization and remeshing methods for processing geometry images, enabling effective compression, GPU splines, and morphing applications. The research emphasizes robustness, good sampling, and regularity to optimize performance.
E N D
Spherical Parameterization and Remeshing Emil Praun, University of Utah Hugues Hoppe, Microsoft Research
Motivation: Geometry Images [Gu et al. ’02] completely regular sampling 3D geometry geometry image257 x 257; 12 bits/channel
Motivation: Geometry Images • Geometry Images [Gu et al. ’02] • No connectivity to store • Render without memory gather operations • No vertex indices • No texture coordinates • Regularity allows use of image processing tools
Spherical Parametrization Genus-0 models: no a priori cuts geometry image257 x 257; 12 bits/channel
Contribution • Our method: genus-0 no constraining cuts • Less distortion in map; better compression • New applications: • morphing • GPU splines • DSP
Outline • Spherical parametrization • Spherical remeshing • Results & applications
sphere S mesh M Spherical Parametrization [Kent et al. ’92] [Haker et al. 2000] [Alexa 2002] [Grimm 2002] [Sheffer et al. 2003] [Gotsman et al. 2003] • Goals: • robustness • good sampling coarse-to-fine stretch metric [Hoppe 1996] [Hormann et al. 1999] [Sander et al. 2001] [Sander et al. 2002]
Coarse-to-Fine Algorithm Convert to progressive mesh Parametrize coarse-to-fine Maintain embedding & minimize stretch
Before Vsplit: No degenerate/flipped 1-ring kernel Apply Vsplit: No flips if V inside kernel Coarse-to-Fine Algorithm V
Before Vsplit: No degenerate/flipped 1-ring kernel Apply Vsplit: No flips if V inside kernel Optimize stretch: No degenerate (they have stretch) Coarse-to-Fine Algorithm V
Traditional Conformal Metric • Preserve angles but “area compression” • Bad for sampling using regular grids
Stretch Metric [Sander et al. 2001] [Sander et al. 2002] • Penalizes undersampling • Better samples the surface
Regularized Stretch • Stretch alone is unstable • Add small fraction of inverse stretch without with
Outline • Spherical parametrization • Spherical remeshing • Results & applications
Domains And Their Sphere Maps tetrahedron octahedron cube
Outline • Spherical parametrization • Spherical remeshing • Results & applications
Results Model courtesy of Stanford University David
Timing Results Pentium IV, 3GHz, initial code
Timing Results Pentium IV, 3GHz, optimized code
Rendering interpretdomain rendertessellation
Level-of-Detail Control n=1 n=2 n=4 n=8 n=16 n=32 n=64
Morphing • Align meshes & interpolate geometry images
Geometry Compression • Image wavelets • Boundary extension rules • spherical topology • Infinite C1 lattice* • Globally smooth parametrization* *(except edge midpoints)
1.5 KB 3 KB 12 KB Compression Results
Smooth Geometry Images [Losasso et al. 2003] GPU 3.17 ms 33x33 geometry image C1 surface ordinary uniform bicubic B-spline
Summary original sphericalparametrization geometryimage remesh
Conclusions • Spherical parametrization • Guaranteed one-to-one • New construction for geometry images • Specialized to genus-0 • No a priori cuts better performance • New boundary extension rules • Effective compression, DSP, GPU splines, …
Future Work • Explore DSP on unfolded octahedron • 4 singular points at image edge midpoints • Fine-to-coarse integrated metric tensors • Faster parametrization; signal-specialized map • Direct DSM optimization • Consistent inter-model parametrization