540 likes | 925 Views
Combinational Logic Circuits. Chapter 2 Mano and Kime. Combinational Logic Circuits. Binary Logic and Gates Boolean Algebra Standard Forms Map Simplification NAND and NOR Gates Exclusive-OR Gates Integrated Circuits. Digital Logic Gates. *. Gates with More than Two Inputs.
E N D
CombinationalLogic Circuits Chapter 2 Mano and Kime
CombinationalLogic Circuits • Binary Logic and Gates • Boolean Algebra • Standard Forms • Map Simplification • NAND and NOR Gates • Exclusive-OR Gates • Integrated Circuits
CombinationalLogic Circuits • Binary Logic and Gates • Boolean Algebra • Standard Forms • Map Simplification • NAND and NOR Gates • Exclusive-OR Gates • Integrated Circuits
CombinationalLogic Circuits • Binary Logic and Gates • Boolean Algebra • Standard Forms • Map Simplification • NAND and NOR Gates • Exclusive-OR Gates • Integrated Circuits
Sum of Products Design X Y minterms 0 0 m0 = !X & !Y 0 1 m1 = !X & Y 1 0 m2 = X & !Y 1 1 m3 = X & Y
Sum of Products Design Design an XOR gate X Y Z 0 0 0 0 1 1 1 0 1 1 1 0 m1 = !X & Y m2 = X & !Y Z = m1 + m2 = (!X & Y) + (X & !Y)
Sum of Products: Exclusive-OR !X & Y Z = (!X & Y) + (X & !Y) X & !Y
Product of Sums Design Maxterms: A maxterm is NOT a minterm maxterm M0 = NOT minterm m0 M0 = m0’ =(X’ . Y’)’ = (X + Y)” = X + Y
Product of Sums Design X Y minterms maxterms 0 0 m0 = !X . !Y M0 = !m0 = X + Y 0 1 m1 = !X . Y M1 = !m1 = X + !Y 1 0 m2 = X . !Y M2 = !m2 = !X + Y 1 1 m3 = X . Y M3 = !m3 = !X + !Y
Product of Sums Design Design an XOR gate X Y Z 0 0 0 0 1 1 1 0 1 1 1 0 Z is NOT minterm m0 AND it is NOT minterm m3
Product of Sums Design Design an XOR gate X Y Z 0 0 0 0 1 1 1 0 1 1 1 0 M0 = X + Y M3 = !X + !Y Z = M0 & M3 = (X + Y) & (!X + !Y)
X Y X + Y Z !X + !Y X !X Y !Y Z = (X + Y) & (!X + !Y) Product of Sums: Exclusive-OR
CombinationalLogic Circuits • Binary Logic and Gates • Boolean Algebra • Standard Forms • Map Simplification • NAND and NOR Gates • Exclusive-OR Gates • Integrated Circuits
Three- Variable Map: Flat and on a Cylinder to Show Adjacent Squares
YZ 00 01 11 10 X 0 1 Three-variable K-Maps 1 1 1 1 F = !X & !Y + X & Z
YZ 00 01 11 10 X 0 1 Three-variable K-Maps F = !X & !Y & !Z + !X & !Y & Z + X & !Y & Z + X & Y & Z 1 1 1 1 F = !X & !Y & (!Z + Z) + X & Z & (!Y + Y) = !X & !Y + X & Z
YZ 00 01 11 10 X 0 1 Three-variable K-Maps 1 1 1 1 1 F = Y & !Z + X
YZ 00 01 11 10 X 0 1 Three-variable K-Maps 1 1 1 1 1 1 F = !X & !Y + X & y + Z
YZ 00 01 11 10 X 0 1 Three-variable K-Maps 1 1 1 1 F = X & Z + !X & !Z
YZ 00 01 11 10 X 0 1 Three-variable K-Maps 1 1 1 1 1 1 F = Y + !Z
YZ 00 01 11 10 X 0 1 3 2 0 4 5 7 6 1 Three-variable K-Maps 1 1 1 1 F = m0 + m2 + m5 + m7 = S(0,2,5,7)
Four-Variable Map: Flat and on a Torus to Show Adjacencies
YZ 00 01 11 10 WX 00 01 11 10 Four-variable K-Maps 1 2 0 3 6 7 4 5 12 15 13 14 11 10 9 8 Each square is numbered in the above K-map
YZ 00 01 11 10 WX 0 1 3 2 00 4 5 7 6 01 12 13 15 14 11 8 9 11 10 10 Four-variable K-Maps F(W,X,Y,Z) = S(2,4,5,6,7,9,13,14,15)
Four-variable K-Maps YZ 00 01 11 10 WX 00 1 F = !W & X + X & Y + !W & Y & !Z + W & !Y & Z 01 1 1 1 1 11 1 1 1 10 1
CombinationalLogic Circuits • Binary Logic and Gates • Boolean Algebra • Standard Forms • Map Simplification • NAND and NOR Gates • Exclusive-OR Gates • Integrated Circuits
Prime Implicants Each product term is an implicant F = XY’Z + X’Z’ + X’Y A product term that cannot have any of its variables removed and still imply the logic function is called a prime implicant.
CombinationalLogic Circuits • Binary Logic and Gates • Boolean Algebra • Standard Forms • Map Simplification • NAND and NOR Gates • Exclusive-OR Gates • Integrated Circuits
Generalized De Morgan’s Theorem • NOT all variables • Change & to + and + to & • NOT the result • -------------------------------------------- • F = X & Y + X & Z + Y & Z • F = !((!X + !Y) & (!X + !Z) & (!Y + !Z)) • F = !(!(X & Y) & !(X & Z) & !(Y & Z))
F = !(!(X & Y) & !(X & Z) & !(Y & Z)) NAND Gate
F = X & Y + X & Z + Y & Z X Y X F Z Y Z
CombinationalLogic Circuits • Binary Logic and Gates • Boolean Algebra • Standard Forms • Map Simplification • NAND and NOR Gates • Exclusive-OR Gates • Integrated Circuits
Exclusive-OR Gate XOR X Y Z 0 0 0 0 1 1 1 0 1 1 1 0 X Z Y Z = X $ Y X $ !Y = !(X $ Y) !X $ Y = !(X $ Y) A $ B = B $ A (A $ B) $ C = A $ (B $ C) = A $ B $ C X $ 0 = X X $ 1 = !X X $ X = 0 X $ !X = 1