1 / 31

Chapter 2

Chapter 2. Chemical Principles. part B. Structure and Function. The chain of carbon atoms in an organic molecule is the carbon skeleton Saturated hydrocarbons : Carbon-carbon single bond Ethane – C 2 H 6 Hexane – C 6 H 14 - Cyclohexane

dewei
Download Presentation

Chapter 2

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 2 Chemical Principles part B

  2. Structure and Function • The chain of carbon atoms in an organic molecule is the carbon skeleton • Saturated hydrocarbons: Carbon-carbon single bond • Ethane – C2H6 • Hexane – C6H14 -Cyclohexane • Unsaturated hydrocarbons:Carbon-carbon double bond, • Ethylene – C2H4 Benzene – C6H6

  3. Structure and Function • Replacing one of the H atoms in propane molecule with a functional group: • Propane – C3H8 • With OH- will become an alcohol (Propanol) Propanol - C3H7OH - Isopropanol • Replacing two more H atoms from the same C with Oxygen –will become an acid - Propanoic acid - CH3CH2COOH – C2H5COOH Functional group – hydroxyl group Radical Functional group – carboxyl group - COOH

  4. Organic compounds in life organisms

  5. Organic Compounds M Glucose C6H12O6 • The small molecules are called monomers. • Monomers join by dehydration synthesis or condensation reactions into large molecules -polymers . • Macromolecules are polymers consisting of many small repeating molecules-monomers. n M M n Cellulose (C6H10O5)n M M M M M M M M M

  6. Organic Compounds 1. Monomers join by dehydration synthesis or condensation reactions. 2. Macromolecules degrade to monomers by hydrolysis or decomposition reactions 1 Enzyme 1 R-OH + HO-R R-O-R + H2O Enzyme 2 2 Figure 2.8

  7. Organic compounds in life organisms

  8. 1. Carbohydrates Glucose – C6H12O6 • Consist of C, H, and O with the formula (CH2O)n • Monomers - Monosaccharides are simple sugars with 3 to 7 carbon atoms. • glucose, fructose, galactose, ribose, deoxyribose • Disaccharides are formed when two monosaccharides are joined in a dehydrationsynthesis. • Sucrose (glucose-fructose), lactose (glucose-galactose) • Disaccharides can be broken down by hydrolysis. Figure 2.8

  9. Oligosaccharides consist of 2 to 20 monosaccharides. • Polysaccharides consist of tens or hundreds of monosaccharides joined through dehydration synthesis. • Starch, glycogen, dextran, and cellulose are polymers of glucose that are covalently bonded differently. • Chitin is a polymer of two sugars repeating many times.

  10. Function of Carbohydrates • Cellstructures • Nucleic acids - ribose, deoxyribose • Cell wall – peptidoglycan, cellulose, chitin • Bacterial capsule • Cell energy • Energy sources • Short term energy storage

  11. C C C C 2. Lipids • Lipids are a broad group of naturally-occurring molecules which includes fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), phospholipids, and others. • Consist of C, H, and O. A. Simple lipids - called fats – contain an alcohol glycerol and a group of compounds as fatty acids • Fatty acids - longchains of carbon and hydrogen atoms, with a carboxylic acid group at one end • Saturated • Unsaturated fats have one or more double bonds between carbons in the fatty acids. • Are nonpolar and insoluble in water

  12. A molecule of fat is formed when a molecule of glycerol combines with one to three fatty acid molecules by dehydration synthesis • Monoglycerides, diglycerides,triglycerides • Saturated and Unsaturated fatty acids Figure 2.9c

  13. B. Complex lipids • Contain C, H, and O + P, N, or S. • Membranes are made of phospholipids

  14. C. Steroids • Steroid skeleton consist of four carbon rings • Steroids vary by the functional groups attached to these rings • Sterol - modified steroid with an –OH group attached to the ring A. • Are part of membranes. Figure 2.11

  15. Function of Lipids • Plasma membranes • Cell organelles • Some cell walls • Long term energy storage

  16. 3. Proteins • Consist of one or more polypeptide molecules typically folded into a globular or fibrous form, facilitating a biological function. • Protein macromolecules monomers - amino acids • Only 20 amino acids

  17. Amino acids Table 2.4.1

  18. Peptide Bonds • A peptide bond is a covalent bond that is formed between two amino acids when the carboxyl group of one molecule reacts with the amino group of the another molecule. • Peptide bonds between amino acids are formed by dehydration synthesis. • A single linear chain of amino acids bonded together by peptide bonds is called polypeptide • For chains under 40 residues the term peptide is frequently used instead of protein. Figure 2.14

  19. The primary structure of a protein is the amino acid sequence of the peptide chains. It is reported starting from the amino-terminal (NH2) end to the carboxyl-terminal (COOH) Proteins structure - Primary structure Met - Cys - Val - Ala - Tyr - Arg Peptide bonds

  20. Proteins structure - Primary structure R R R R R R

  21. Peptide bonds Figure 2.15 Protein structure. Hydrogen bond (a) Primary structure: polypeptide strand (b) Secondary structure: helix and pleated sheets (with three polypeptide strands) Helix Pleated sheet Hydrophobic interaction Insert Fig 2.15a Insert Fig 2.15 Disulfide bridge Polypeptide strand Hydrogen bond (c) Tertiary structure: folded helix and pleated sheet Disulfide bridge (between cysteine molecules) Functionally active Ionic bond (d) Quaternary structure: two or more polypeptides in their folded states Details of bonds associated with tertiary structure Functionally active

  22. Conjugated proteins consist of polypeptide chain bound to other organic molecules: • Glycoproteins • Nucleoproteins • Lipoproteins

  23. Function of Proteins • Are essential in cell structure and function. • Enzymes are proteins that speed chemical reactions. • Transporter proteins move chemicals across membranes. • Structural or mechanical functions, that maintain cell shape ( actin, cell wall). • Cell signaling - complex system of communication that coordinates cell actions. • Flagella are made of proteins. • Some bacterial toxins are proteins. • Immune responses – antibodies, cytokines are proteins.

  24. 4. Nucleic Acids • Macromolecules - DNA and RNA • Monomers are nucleotides. • Nucleotides consist of a: • Sugar pentose (with 5 carbons) • ribose • deoxyribose • Nitrogen-containing base (purine or pyrimidine) • Phosphate group Purines – Adenine and Guanine Pyrimidines – Cytosine, Thymine and Uracil

  25. DNA • Monomers are deoxyribonucleotides • sugar-deoxyribose • Purines - Adenine and Guanine; Pyrimidines - Cytosine and Thymine • Primary structure – nucleotide sequence • The primary structure of DNA or RNA molecule is reported from the 5' end to the 3' end • 5’ end – PO4 (phosphate group) • 3’ end – OH (hydroxyl group) • The sugar-phosphate backbone of one strand is upside down, or antiparallel, relative to the backbone of the other strand. PO4 OH PO4 OH Figure 2.16

  26. DNA – secondary structure – double helix • Two molecules form the double helix • A hydrogen bonds with T (2 hydrogen bonds) • C hydrogen bonds with G (3 hydrogen bonds) Phosphate Sugar Adenine (A) - Thymine (T) Sugar Phosphate Hydrogen bonds Adenine nucleotide Thymine nucleotide Individual DNA nucleotides are composed of a deoxyribose sugar molecule covalently bonded to a phosphate group at the 5’ carbon,and to a nitrogen-containing base at the 3’ carbon. The two nucleotides shown here are held together by hydrogen bonds. Insert Fig 2.16 Sugars Sugar-phosphate backbone Phosphates

  27. RNA • Monomers are ribonucleotides • sugar ribose • Primary structure – nucleotide sequence • Single-stranded • Can form secondary structure • A hydrogen bonds with U (2 hydrogen bonds) • C hydrogen bonds with G (3 hydrogen bonds) tRNA siRNA Figure 2.17

  28. Function of Nucleic acids • DNA contains all the information - coding which is used to control functions, behavior and development of an organism. • Long term storage device to store the genetic instructions. • The code from which all proteins in the cell are synthesized • Code for the way proteins turn genes on or off. • RNA carries out the instructions encoded in DNA • Protein synthesis • In some organisms it is also responsible for carrying the genetic code. • Some RNA are involved in the regulation of the gene expression

  29. ATP – Adenosine triphosphate • Is made by dehydration synthesis. • Is broken by hydrolysis to liberate useful energy for the cell. ATP ADP

  30. Function of ATP • ATP is the main energy source for the majority of cellular functions. • Important player in cell respiration. • Synthesis of macromolecules in the cell - DNA and RNA, proteins, lipids and carbohydrates. • Supply energy for the transport of macromolecules across cell membranes. • ATP is critically involved in maintaining the locomotion of the cell .

  31. Learning objectives • Identify the structure and function of carbohydrates. • Identify the structure and function of lipids. • Identify the structure and function of proteins. • Identify the structure and function of nucleic acids • Describe the role of ATP in cellular activities.

More Related