1 / 41

Tightly coupled INS/GPS system using particle filter D0928- system architecture and math functions Part A - Final presen

Tightly coupled INS/GPS system using particle filter D0928- system architecture and math functions Part A - Final presentation. Students: Royzman Danny Peleg Nati Supervisor: Fiksman Evgeni. Agenda. Math functions Overview Trigonometric Exp{-x} SQRT Implementation

dex
Download Presentation

Tightly coupled INS/GPS system using particle filter D0928- system architecture and math functions Part A - Final presen

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Tightly coupled INS/GPS system using particle filterD0928- system architecture and math functionsPart A - Final presentation Students: Royzman Danny Peleg Nati Supervisor: Fiksman Evgeni

  2. Agenda • Math functions • Overview • Trigonometric • Exp{-x} • SQRT • Implementation • Performance • Infrastructure – Phase1 • Main difficulties • Block diagram • Controllers diagram • Gantt Chart

  3. Math functions - Overview Particle propagation Revaluation Dk computation sine & Cosine exp sqrt Reweight GPS update + Neff

  4. Math functions - guidelines The following guidelines were defined for function implementation: • I/O format : signed fixed point. • Maximum flexibility. • Low FPGA resource usage. • Reasonable accuracy.

  5. Math functions – OverviewInitial proposal Initially proposed implementation based on CORDIC algorithm • Iterative algorithm. • I/O format : variable width signed fixed point. • Low HW requirements. • Easily adjustable and easily implementable . • Allows a generic unified core, for all the functions needed. • Rough accuracy estimation is one bit for each iteration.

  6. Math functions – OverviewCORDIC R&D • See project book for more details

  7. Math functions – OverviewAlgorithm adjustments

  8. Math functions – ImplementationTrigonometric functions • Variable-width variable-pipeline CORDIC algorithm. • Sine, Cosine functions implemented in single unit. • Pre & Post processing units added for broader input coverage. • Pipe core contains datapath and control stages. • Pipe core combined from variable (2,4..16) amount of single stages, separated by a register. • Default values: (HW cost/accuracy trade off). • Stages total amount : 32 units. • Input/output width :32 bit. • IO format 1.2.29 input, 1.0.31 output

  9. Default values LUT Math functions – ImplementationTrigonometric functions Post-Processing unit Pre-Processing unit Sine Pipe Core Input Cosine

  10. Math functions – ImplementationTrigonometric functions Single pipe stage http://en.wikibooks.org/wiki/Digital_Circuits/CORDIC

  11. Math functions – ImplementationTrigonometric functions Pre processing unit

  12. Math functions – ImplementationTrigonometric functions Post processing unit

  13. Math functions – ImplementationExponential function • “Invariants” method will be used • 17 single stages. • Executing a 4-stages pipe flow. • 5 unique “integer” stages. • 6 unique “fractal” stages, repeated twice for better coverage. • Pipe core contains datapath and control stages. • IO format 0.5.27 input, 0.0.32 output.

  14. Math functions – ImplementationExponential function Single stage

  15. Math functions – ImplementationSquare root function • “A non-restoring square root” algorithm will be used • Fully combinatorial implementation • 48 unique iterations, can be pipelined. • IO format 0.32.64 input, 0.16.32 output.

  16. Math functions – ImplementationSquare root function Schematic

  17. Math functions – Performance

  18. Infrastructure Infrastructure mile stone - GPS Phase I is done • Infrastructure – Phase1 • Main difficulties • Block diagram • Controllers diagram

  19. InfrastructureMain difficulties • Integration problems between frames. • Hardware adjustments for debug . • Long compilation time.

  20. InfrastructurePhase1 - block diagram Taken from Gadi&Eran’s D1418_BOOK

  21. InfrastructurePhase1 - connectivity

  22. InfrastructurePhase1 - connectivity

  23. InfrastructurePhase1 - connectivity

  24. InfrastructurePhase1 - controllers diagram Main controller1 F.S.M

  25. InfrastructurePhase1 - controllers diagram Local controller2 F.S.M

  26. InfrastructurePhase1 - controllers diagram Main controller3 F.S.M

  27. InfrastructurePhase1 - controllers diagram Main controller4 F.S.M

  28. InfrastructurePhase1 - From Debug

  29. InfrastructurePhase1 - From Debug +100 cycles

  30. InfrastructureGantt Chart

  31. Q&A

  32. Backup

  33. אלגוריתם CORDIC סיבוב וקטור – התמרה כללית :

  34. אלגוריתם CORDIC

  35. אלגוריתם CORDIC הצובר הזוויתי:

  36. אלגוריתם CORDIC • שני מצבי עבודה : Rotation by Volder .1– מצב סיבוב 2.Vectoring – מצב וקטורי

  37. אלגוריתם CORDIC בסה"כ עבור מצב סיבוב :

  38. אלגוריתם CORDIC

  39. אלגוריתם CORDIC

  40. Hyperbolic functions Pre Process Unit Proposed HW implementation Mathematical actions required, compared to regular single stage • X. Hu, R. Huber, S. Bass, “Expanding the Range of • Convergence of the CORDIC Algorithm”, IEEE • Transactions on Computers. Vol. 40, Nº 1, pp. 13-21, Jan.1991. • Daniel R. Llamocca-Obregón,Carla P. Agurto-Ríos; A FIXED-POINT IMPLEMENTATION OF THE EXPANDED HYPERBOLIC • CORDIC ALGORITHM • http://www.iberchip.org/iberchip2006/ponencias/106.pdf Back

  41. Hyperbolic functions Pre Process Unit Proposed HW implementation • C simulation results, acquired by running D0228 (Neta & Moti) project code. • Maximum Exponential input : 375.704604 • Minimum Exponential input : 0.12665 • Average Exponential input : 14.15504 • Convergence zone expansion: • Total values checked : >1000000 (One million) Back

More Related