1 / 12

Solving Two-Step Equations

#41. Solving Two-Step Equations. 1: Solving Two-Step Equations. Solve each equation. 18 + 3 x = 30. Helpful Hint. Undo operations in the reverse of the Order of Operations. First undo addition or subtraction. Then undo multiplication or division. Example 2 : Solving Two-Step Equations.

diane
Download Presentation

Solving Two-Step Equations

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. #41 Solving Two-Step Equations

  2. 1: Solving Two-Step Equations Solve each equation. 18 + 3x = 30

  3. Helpful Hint Undo operations in the reverse of the Order of Operations. First undo addition or subtraction. Then undo multiplication or division.

  4. Example 2: Solving Two-Step Equations Solve. Check the answer. x 3 – 2 = 1

  5. Example 3: Solving Two-Step Equations Solve. Check the answer. x + 19 4 = 6

  6. Example 4 Solve each equation . 7 x – 5 = 23

  7. Example 5 Solve each equation . x – 16 = 9 3

  8. Example 6 Solve. Check the answer. x - 9 10 = 49

  9. Example 7: Consumer Math Application Nancy saved $87 of the money she made babysitting. She wants to buy CDs that cost $15 each, along with a set of headphones that costs $12. How many CDs can she buy?

  10. Example 8 Kaia earned $425 last week. She wants to put $350 in the bank and buy some DVDs. Each DVD costs $25. Write a two-step equation to represent the situation. Then solve the equation. How many DVDs can she buy?

  11. Example 9: Working Backward with Function Rules The rule for a certain function is to multiply the input by 5 and subtract 4. Find the input value when the output is 11.

  12. Example 10 The rule for a certain function is to multiply the input by 2 and subtract 8. Find the input value when the output is 3.

More Related