1 / 43

New results in lepton - nucleon spin physics

New results in lepton - nucleon spin physics. K. Rith, DIS04, 14.4.2004. Spin -dependent SF g 1 (x), g 2 (x). Quark helicity distr. q f (x). Gluon polarisation g(x)/g(x). Transversity distribution q f (x). The HERMES spectrometer.

Download Presentation

New results in lepton - nucleon spin physics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. New results in lepton-nucleonspin physics K. Rith, DIS04, 14.4.2004 Spin-dependent SFg1(x), g2(x) Quark helicity distr. qf(x) Gluon polarisation g(x)/g(x) Transversity distribution qf(x)

  2. TheHERMESspectrometer HERAe+/e- beam of 27.6 GeV, I~50 10 mA, beam-pol~55% kinematics: 0.02<x<0.6, 1.0<Q2<15 GeV2 tracking: p/p~2%, <0.6 mrad, 40-220 mrad PID: Calorimeter, Preshower, TRD, RICH

  3. HERMESinternal target Pure polarised gas targets: H, D, 3He, target polarisation: pT(H,D)  85% Luminosity: 4*1030 cm-2 s-1(H @ 10 mA)  6*1033 cm-2 s-1 (D2@ 50 mA) spin reversal every 120 sec

  4. HERMES data taking Long. TargetPolarisation Transv. TargetPolarisation

  5. COMPASS at CERN E = 160 GeV, pB -76% 2.8*108/spill (4.8 s/16.2 s) polarized LiD-target , pT 50% Luminosity:  5*1032 cm-2 s-1 50 m

  6. 3He – 4He Dilution refrigerator (T~50mK) superconductive Solenoid (2.5 T) Dipole (0.5 T) two 60 cm long Target-Containers with opposite polarization COMPASS polarized LiD target 4 possible spin combinations: 1 2 reversed every 8 hours or: 3 4 SMC PT magnet: present acceptance 70 mrad instead of 180 mrad reduced acceptance for x > 0.1 reversed once a week Polarization: ~50%

  7. GB COMPASS data taking 2002: 260 TByte 2003 Event reconstruction: 500 TB raw data  500 000 Batch jobs ( 1 GByte ~ 8 hours) Process in parallel as much as possible (presently: ~1000 CPUs) • 2002 & 2003: • 500 TByte Data • 1010Events long. pol. • 3.109 Events transv. pol. • 0.1% with Q²>1(GeV/c)²

  8. Experiments @JLAB CEBAF Large Acceptance Spectrometer E < 6 GEV, Luminosity < 1036 cm-2s-1, pB 0.7, pT  0.35 Luminosity < 1034 cm-2s-1

  9. Spin-dependent Deep-Inelastic Lepton-Nucleon Scattering Nucleon Nucleon     Quarks Quarks 1/2~q+  3/2~q-  Helicity distr.: q(x):=q+(x)-q-(x) g1(x) := ½ q zq2q(x) 1/2- 3/2g1 Asymmetry: A1=  F1(x) := 1/2+ 3/2F1 ½ q zq2q(x) f = 1 for H, D f < 0.5 for LiD f < 0.33 for 3He f < 0.17for NH3 Dilutions: Aexp (fpTDpB) A1 A1 ~ (fpTDpBN)-1

  10. A1g1/F1 - Proton andDeuteron  g1p/F1p well known for x10-3 Excellent agreement between all experiments g1p/F1p(within errors) independent of Q2;Q2 dependence ofg1 and F1very similar <Q2> = f(x) Extrapolationtox0for Q2 =Q02 ? HERMES errors will increase at low and high x due to unfolding corr.

  11. First A1d from COMPASS 2002 data only:6.5 Million DIS events Q2 > 1 (GeV/c)2, 0.1 < y < 0.9 expect *4 statistics by end of 2004 Details  M. Leberig, WG F

  12. A1n from Jlab E99-117 Phys. Rev. Lett. 92, 012004 (2004) In addition: 1n(Q2), g2n(x,Q2), 2n(Q2), d2(Q2) 12 GeV upgrade: more data at higher x Details  N.Liyanage, WG F

  13. xg1(x) - world data Integrals at Q02 = 2,5 GeV2, QCD analysis of Q2 dependence and SU(3): ? =u+d+s  0,20  0,04 .. ? GluonsG Rest? Orbital angular momentaLq,g

  14. NLOQCD(MS) fit • Assumptions: • Helicity distribution of sea quarks flavour symmetric • - uv and dv constraint by F and D (SU(3) symmetry) • Results for Q02= 4 GeV2: • uv  0.73 .....0.86 (0.10) • dv -0.40...-0.46 (0.10) • qs -0.04 ...-0.09 •   0.14 ...0.20 • G  0.68 ...1.26 BB: Blümlein, Böttcher hep/ph 0203155 LSS: Leader et al., hep/ph 0111267 GRSV: Glück et al., hep/ph 0011215 AAC: Goto et. Al., hep/ph 0001046

  15. NLOQCD(MS) fit Concern: uv and dv constraint by F and D (SU(3) symmetry) ga/gv = 1.0 instead of 1.254 give same quality of fit in measured region All the difference is shifted to the unmeasured low-x region low-x extrapolation and results for moments questionable HERMES will only state partial moments over measured region

  16. Quark helicity distributions from semi-inclusive asymmetries =E - E‘ z = Eh/ Leading hadron originates with large probability from struck quark D(z):= Fragmentation function

  17. Semi-inclusive asymmetries-1 In leading order: P.L. B 464 (1999) 123 zq2q(x)Dqh(z) A1h(x,z) = zq2q(x)Dqh(z) zq2q(x)Dqh(z) q(x) = zq‘2q‘(x)Dq‘h(z)q(x) Quark-‘Purity‘ Phq Different targets and hadrons h: Solve linear system for Q with A = (A1,p, A1,d, A1,p, A1,d, A1,pK ) A = PQ

  18. Semi-inclusiveasymmetries-Deuteron ,K, p asymmetries identified with RICH PionsKaons P.R.L.92 (2004) 012005 Statistics sufficient for 5-parameter-fit Q(x) = (u(x)/u(x), d(x)/d(x), u(x)/u(x), d(x)/d(x), s(x)/s(x) )

  19. Extracted quark helicitydistributions P.R.L.92 (2004) 012005 u > d ? The HERMES data are consistent with flavour symmetry of sea quarkhelicity distributions d(x) - 0.4 u(x) (!?) What is the dynamics behind this?? Data with much higher statistical accuracy urgently needed s < 0 ? Details  M. Leberig, WG F x

  20. ThegluonpolarisationG/G Method: Photon-Gluon-Fusion q q t  h/2mq  Charm-production (Hard scale: mass of c-quark) e+, + e-, - D J/ * * c pt c c c g c g c D  Pairs of hadrons h+h- with high transverse momenta (Hard scale: pT ) h2 * g () h1

  21. G/G from high-pT hadron pairs 3 main contributions to *p  h+h- X : h2 h2 h2 * q q * * q V q g p g q q h1 h1 QCDC VMD PGF h1 AVDM +0.5 q/q AVDM = 0 APGF -1G/G Relative contributions: Monte Carlo simulation - PYTHIA(5) But: applicable at HERMES (COMPASS) kinematics? Resolved photons? Intrinsic kT? ? Tuned PYTHIA6 givesmuchsmaller fPGF

  22. G/G from high-pT hadron pairs P.R.L. 84 (2000) 2584 Quasi-real photoproduction Proton target 0.06 < x < 0.28 <Q2> = 0.06 (GeV/c)2 Asymmetry is negative A= - 0.28  0.12  0.02 G/G= 0.41  0.18  0.03

  23. High-pT hadron pairs: COMPASS Cuts: 0.4 < y < 0.9, z > 0.1, xF > 0.1 no Q2 cut, logQ2  -1 pT1, pT2 > 0,7 GeV/c p2T1 + p2T2 > 2.5 GeV2/c2 m(h1h2) > 1.5 GeV/c2 (removes VM) Result: A||/D = - 0.065  0.036(stat)  0.01(syst) Error for asymmetry already very small projected stat. error (incl. 2003/04): 0.018 But: data dominated by low pT

  24. G/G from high-pt hadron pairs A = - 0.133  0.058 A = - 0.040  0.042 1996 – 2000 data A = - 0.039  0.028

  25. G/G from high-pT hadron pairs: SMC E = 190 GeV Cuts: as COMPASS exception: Q2 > 1 GeV2/c2 DIS regime optimization offPGF:pT-cuts and neural network -(NN) fPGF 0.3 hep-ex/0402010 Result: Asymmetry is positive ! ? Proton plus deuteron data, NN classification: G/G= -0.20  0.28  0.10

  26. D0 D* Charm production: COMPASS J/ Details  F.H. Heinsius, WG F Signal seen, but limited statistics, (remind dilution factors !) Still some way to go for G/G 2002: mostly “elastic“ background 2003: dedicated trigger (2*yield) - study diffractive and elastic processes

  27. chiral odd FF: Collins FF single helicity flip double helicity flip ‘Transversity‘ h1 Complete description of nucleon in leading order QCD: 3 DF f1 = Quark momenta,  q q , V g1 = - longitudinal quark spin, , q   5q, A h1 = - transverse quark spin, , q 5 q, T h1 is chiral odd, measurement requires other chiral odd DF (e.g. Drell-Yan), or FF (SIDIS) like the Collins FF H1(z)

  28. Azimuthal asymmetries: CollinsvsSiverseffect 2 different possible sources for azimuthal asymmetry:  product of chiral-odd transversity distribution h1(x) and chiral-odd fragmentation function H1(z)(Collins)  product of naive time-reversal odd distribution function f1T and familiar unpolarised fragmentation function D1(z) (Sivers) (requires orbital angular momentum of quarks) Longitudinally polarised target: Collins and Sivers effect indistinguishable Transversely polarised target: 2 azimuthal angles, Collins andSivers effect distinguishable AUTsin( + s ) AUTsin( - s )

  29. Single Spin Asymmetries (SSA) ep(d)e‘hX N+() -N-() AUL() = N+() +N-() U: unpol. e-beam L: long. pol. Target Fit sin() to asymmetries AULsin() transverse spin component: ST sin  (15% - 20%) (for HERMESkinematics)

  30. SSA from long. polarized target Deuteron Proton P.L. B 562 (2003) 182 + P.R. D 64 (2001) 097101. o o + - - K+ - + 0  - +  0 2.4 M DIS 8.9 M DIS

  31. AULsin() from long. polarized target P.L. B 562 (2003) 182 + HERMES CLAS + o Furthermore: ALUsin() (~ e(x)) - K+ Details  E. Avetisyan, M. Khandaker, WG F

  32. AULsin() from longitudinally polarized target + AULsin  SL(M/Q) za2 x [hLa(x) H1a(z) - x h1La(x) Ha(z)/z + ..] - ST za2 x h1a(x) H1a(z) SL >> ST Collins fragmentation function o Theory predictions seem to explain the data well A.V. Efremov et al., Eur. Phys. J. C 24 (2002) 47 B. Ma et al., P.R. D66 (2002) 094001 but contain a lot of assumptions: magnitude of H1/D1 4 ...12% only part of Twist-3 contribution taken into account no Sivers contribution taken into account - K+

  33. AUTsin() from transv. pol. H target Simultaneous fit to sin( + s) and sin( - s) „Collins“ moments Unexpected pattern: expect A+  Ao 0 and A- 0 and smaller in magnitude Data show A+  0 but Ao  A-  0 and larger in magnitude Possible source: H1,disf - H1,fav?

  34. AUTsin() from transv. pol. H target Simultaneous fit to sin( + s) and sin( - s) „Sivers“ moments First measurement of Siversasymmetry Sivers function nonzero  orbital angular momentum ofquarks Details  R. Seidl, WG F Sivers flavor separation possible and underway HERMES 2002-2005 data: Hope for factor of 4-9 in statistics

  35. Collins asymmetryfromCOMPASS 2002 data Details  H. Fischer, WG F 2002 data COMPASS 2002-2004 data: ~ factor of 4 in statistics

  36. Stay tuned … New exiting results will come soon ! Conclusions Plenty of new data from COMPASS, HERMES, JLAB, SMC Rather precise results on asymmetries, spin-dependentSF and quark helicity distributions. Furtherimprovementsonmeasurementofsea quark polarisation desirable G/G results puzzling, we still wait for a clean and precise experimental determination First results on Transversity andSiverseffect very promising Special thanks to H. Fischer and Z.-E. Meziani

  37. g2(x) ~ ~ g2(x,Q2) = - g1(x,Q2) + g1(z,Q2) dz/z + g2(x,Q2) = g2WW(x,Q2) + g2(x,Q2) Quark-Gluon Correlation (Twist-3 Operator) E155x, Phys. Lett. B 553 (2003) 18 Further improvement by HERMES and COMPASS very unlikely

  38. Test of Burkhardt-Cottingham SR • valid at all Q2 • Many scenarios of g2’s low x behavior which would invalidate the sum rule are discussed in the literature. Courageous extrapolations to high and low x Conclusion of authors: BC-sum rule fullfilled within errors Details  N.Liyanage, WG F

  39. AT, b1and b2- deuteron Deuteron is spin-1 target V = Pz= p+ - p- , Pz1 T = Pzz= p+ + p- -2p0 , -2 Pz z +1 More structure functions meas = u [1 + PbVA + ½TAT] A  g1/F1 [ 1 +½ TAT] AT  2/3b1/F1 Proton Deuteron F1½ zq2 [q+ + q-] 1/3 zq2 [q+ + q-+ q0] F2 2xF1 2xF1 g1½ zq2 [q+ - q-] ½ zq2 [q+ - q-] b1½ zq2 [2q0 - (q+ + q-)] b2 2xb1

  40. The HERMESpolarised internal gas target

  41. AT, b1and b2- deuteron First measurement, only possible with atomic gas target Model: K. Bora, R.L. Jaffe, PRD 57 (1998) 6906

  42. AT, b1and b2- deuteron See e.g.: - P. Hoodboy et al., N.P. B312 (89) 571 - R.L. Jaffe & A. Manohar N.P. B321 (89) 343 - X. Artru & M. Mekhfi, Z. Phys. C45 (90) 669 - N.N. Nikolaec & W. Schäfer, P.L. B398 (97) 245 - J. Edelmann et al., Z. Phys. A357 (97) 129, P.R. C57 (98) 3392 - K. Bora & R.L. Jaffe, P.R. D57 (98) 6906 - - Deuteron is spin-1 target AT  10-2 little impact on det. of g1 b1dis sizeable ! and interesting by itself related to - nuclear binding - D-stateadmixture - diffractive nuclear shadowing - nuclear excess pions inD - VMD+ double scattering - -

  43. Purities (Probability that observed hadron originates from quark of type f) Kaons have about 10% sensitivity to the strange sea Adequate degree of orthogonality: Shaded bands: systematic uncertainties

More Related