1 / 35

Network Driver in Linux 2.4

Network Driver in Linux 2.4. 潘仁義 CCU COMM. Overview. Auto Configuration. I/O access Byte ordering Address translation. Bus cycles. Bus. Direct Memory Access Power management. Operating System. Device. Driver framework Timer management Memory management

dianne
Download Presentation

Network Driver in Linux 2.4

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Network Driver in Linux 2.4 潘仁義 CCU COMM

  2. Overview Auto Configuration I/O access Byte ordering Address translation Bus cycles Bus Direct Memory Access Power management Operating System Device Driver framework Timer management Memory management Race condition handling (SMP) CPU/Memory cache consistency Device operations Interrupt handling

  3. Outline • Driver framework • Linux network drivers • Device operation • RTL8139 programming • Driver example • A piece of code for 93C46 series • EEPROM, 93C46 64 x 16 bits, 93C66 256 x 16 bits • pci_skeleton.c (for RTL8139)

  4. Linux network driver frameworkConnecting to the Kernel (1/2) • Module_loading • struct net_device snull_dev = { init : snull_init, }; //初始化函式 • if((result = register_netdev(snull_dev)))) printk(“error”); • 呼叫前, 先設定name 為“eth%d”, 以便其配置 “ethX” • 函式內部會呼叫 devinit() • snull_init( ) • Probe function • Called when register_netdev() • Usually avoid registering I/O and IRQ, delay until devopen() time • To fill in the “dev” strcuture • ether_setup(dev) • 設定私有資料結構 “priv”; 網路介面生命期與系統一樣長, 可放統計資料 • Module_unloading • kfree(priv); • unregister_netdev (snull_dev);

  5. Linux network driver frameworkConnecting to the Kernel (2/2) • struct net_device { • char name[IFNAMSIZ]; // eth%d • unsigned long base_addr, unsigned char irq; • unsigned char broadcast[], dev_addr[MAX_ADDR_LEN]; • unsigned short flags; // IFF_UP, IFF_PROMISC, IFF_ALLMULTI • Function pointers: • (*init) 初始化 • (*open) 開啟介面 • (*stop) 停用介面 • (*do_ioctl)() • (*tx_timeout) 逾時處理 • (*get_stats) 結算統計資訊 • (*hard_start_xmit) 送出封包 • (*set_multicast_list) 群播及flag變動處理 • unsigned long trans_start, last_rx; // for watchdog and power management • struct dev_mc_list *mc_list; // multicast address list

  6. Linux network driver frameworkOpening and closing • 在介面傳輸封包之前,必須先以ifconfig開啟介面,並賦予IP位址 • ifconfig設定IP位址給介面時: • ioctl(SIOCSIFADDR)設定軟體位址給介面 • Ioctl(SIOCSIFILAGS)要求驅動程式開啟、關閉介面觸動open及stop • open() • 設法取得必要的系統資源(佔領IRQ, IObase, buffer) • 要求介面硬體起動 • 讀出MAC, 複製到 devdev_addr (也可作在init或probe時) • 將devdev_addr設定至介面MAC暫存器中 • stop() • 停止介面硬體 • 歸還系統資源

  7. Linux network driver frameworkPacket transmission: 當核心需要送出資料封包時 • 將資料排入出境封包佇列(outgoing queue) • 呼叫作業方法 • hard_start_transmit(struct sk_buff *skb, struct net_device *dev) • 僅將封包交付網卡。網卡後續會再將封包傳送至網路(例如RTL8139) • Spinlock_t xmit_lock; 只有在返回後才有可能再被呼叫 • 實務上,於返回之後,網路卡仍忙著傳輸剛交付的封包。 • 網卡緩衝區小,滿了必須讓核心知道,不接收新的傳輸要求。netif_stop_queue()與netif_wake_queue(),netif_start_queue() • 註: 還有Carrier loss detection/Watchdog 的 netif_carrier_on/off()跟Hot-plugging/power management 的 netif_device_attach/detach() • 核心經手的每一封包,都是包裝成一個struct sk_buff • socket buffer • 指向sk_buff的指標,通常取名為skb • skbdata指向即將被送出的封包 • skblen是該封包的長度,單位是octet

  8. If ( present && carrier_ok && queue_stopped && ( jiffies – trans_start ) > watchdog_timeo ) Then Call tx_timeout( ) 更新統計,並設定使能繼續送封包 Linux network driver frameworkTransmission queuing model Present? netif_device_attach() netif_device_detach() Packets go to the LAN Packets from OS Queue stopped ? netif_start_queue() netif_wake_queue() netif_stop_queue() Carrier ok ? netif_carrer_on() netif_carrer_off()

  9. Linux network driver frameworkPacket reception • 封包接收事件通常是從網路硬體觸發中斷開始 • 多半寫在interrupt handler • 配置一個sk_buff,並交給核心內部的網路子系統 • Interrupt-based 較 polling方式有效率 • Example: snull_rx() • skb = dev_alloc_skb(len+2); // 採用GFP_ATOMIC,可在ISR中用 • skb_reserve(skb, 2); // 16 byte align the IP field • memcpy(skb_put(skb, len), receive_packet, len); //skb_put()參考sk_buff • 填寫相關資訊 • skbdev = dev; • skbprotocol = eth_type_trans(skb, dev); • skbip_summed = CHECKSUM_UNNECESSARY; /* 不必檢查 */ • CHECKSUM_HW(硬體算了)/NONE(待算,預設)/UNNECESSARY(不算) • netif_rx(skb); // 交給核心內部的網路子系統

  10. Linux network driver frameworkThe interrupt handler • Interrupt happen when • A new packet has arrived • Transmission of an outgoing packet is completed • Something happened: PCI bus error, cable length change, time out • Interrupt status register (ISR) • Packet reception • Pass to the kernel • Packet transmission is completed • Reset the transmit buffer of the interface • Statistics

  11. headroom payload tailroom An empty sk_buff Linux network driver frameworkThe socket buffers (struct sk_buff) head data tail end len struct sk_buff *dev_alloc_skb(len) 配置 void dev_kfree_skb(struct sk_buff *)釋放 void skb_reserve(skb, len)保留前頭空間 unsigned char *skb_put(skb, len)附加資料 unsigned char*skb_push(skb, len)前置資料 unsigned char *skb_pull(skb, len)前抽資料

  12. Linux network driver frameworkSetup receive mode and multicast accept list • Unicast, broadcast (all 1), multicast (bit0==1) • Receive all, receive all multicast, receive a list of multicast address • Transmit • the same as unicast • Receive • Hardware filtering for a list of multicast addresses • void (*set_multicast_list)(dev) • 要接收的群播位址清單或是dev->flags有改變, 會被核心呼叫 • struct dev_mc_list *mc_list; // int mc_count • 串列所有dev必須接收的所有群播位址 • IFF_PROMISC • 設立則進入『混雜模式』(全收) • IFF_ALLMULTI • 收進所有群播封包

  13. Outline • Driver framework • Linux network drivers • Device operation • RTL8139 programming • Driver example • A piece of code for 93C46 series • EEPROM, 93C46 64 x 16 bits, 93C66 256 x 16 bits • pci_skeleton.c (for RTL8139)

  14. RTL8139 block diagram

  15. Device operationRTL8139(A/B) programming • Packet transmission • 4 transmit descriptors in round-robin • Transmit FIFO and Early Transmit • Packet reception • Ring buffer in a physical continuous memory • Receive FIFO and FIFO Threshold • Hardware initialization • Command register (0x37) • Reset (4) / Transmit Enable (2) / Receive Enable (3) / Buffer empty (0) • Transmit (Tx) Configuration Register (0x40~0x43) • Interframe Gap time (螃蟹卡) (25~24) • Receive (Rx) Configuration Register (0x44~0x47) • Rx FIFO threshold (15~13) • Accept Broadcast (3) / Multicast (2) / All (0, Promiscuous mode) packet • Rx buffer length (12~11) • Interrupt Mask Register (0x3C~0x3D) • Software initialization (TxDescriptor and Ring buffer)

  16. RTL8139 Packet transmissionTransmit descriptor • Transmit start address (TSAD0-3) • The physical address of packet • The packet must be in a continuous physical memory • Transmit status(TSD0-3) • TOK(15R) • Set to 1 indicates packet transmission was completed successfully and no transmit underrun (14R) has occurred • OWN(13R/W) • Set to 1 when the Tx DMA operation of this descriptor was completed • The driver must set this bit to 0 when the “Size” is written • Size(12~0R/W) • The total size in bytes of the data in this descriptor • Early Tx Threshold(21~16R/W) • When the byte count in the Tx FIFO reaches this, the transmit happens. • From 000001 to 111111 in unit of 32 bytes (000000 = 8 bytes)

  17. RTL8139 Packet transmissionProcess of transmitting a packet • copy the packet to a physically continuous buffer in memory • Write the functioning descriptor • Address, Size, Early transmit threshold, Clear OWN bit (this starts PCI operation) • As TxFIFO meet threshold, the chip start to move from FIFO to line • When the whole packet is moved to FIFO, the OWN bit is set to 1 • When the whole packet is moved to line, the TOK(TSD) is set to 1 • If TOK(IMR) is set, then TOK(ISR) is set and a interrupt is triggered • Interrupt service routine called, driver should clear TOK(ISR)

  18. Packet receptionRing buffer • Data goes to RxFIFO • coming from line • Move to the buffer • when early receive threshold is meet. • Ring buffer • physical continuous • CBR (0x3A~3B R) • the Current address of data moved to Buffer • CAPR (0x38~39 R/W) • the pointer keeps Current Address of Pkt having been read • Status of receiving a packet • stored in front of the packet (packet header)

  19. Packet receptionThe Packet Header (32 bits, i.e. 4 bytes) • Bit 31~16: rx_size, including 4 bytes CRC in the tail • pkt_size = rx_size - 4

  20. Packet receptionProcess of packet receive in detail • Data received from line is stored in the receive FIFO • When Early Receive Threshold is meet, data is moved from FIFO to Receive Buffer • After the whole packet is moved from FIFO to Receive Buffer, the receive packet header (receive status and packet length) is written in front of the packet. • CBA is updated to the end of the packet. 4 byte alignment • CMD (BufferEmpty) is clear and ISR(TOK) is set. • ISR routine called and then driver clear ISR(TOK) and update CAPR • cur_rx = (cur_rx + rx_size + 4 + 3) & ~3; • NETDRV_W16_F (RxBufPtr, cur_rx - 16); Packet header Avoid overflow

  21. Outline • Driver framework • Linux network drivers • Device operation • RTL8139 programming • Driver example • A piece of code for 93C46 series • EEPROM, 93C46 64 x 16 bits, 93C66 256 x 16 bits • pci_skeleton.c (for RTL8139)

  22. EEPROM 93C46 operations 93C46 Command Register (0x50 R/W)

  23. /* Shift the read command bits out. */ for (i = 4 + addr_len; i >= 0; i--) { int dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0; writeb (EE_ENB | dataval, ee_addr); eeprom_delay (); writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr); eeprom_delay (); } writeb (EE_ENB, ee_addr); eeprom_delay (); for (i = 16; i > 0; i--) { writeb (EE_ENB | EE_SHIFT_CLK, ee_addr); eeprom_delay (); retval = (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 : 0); writeb (EE_ENB, ee_addr); eeprom_delay (); } /* Terminate the EEPROM access. */ writeb (~EE_CS, ee_addr); eeprom_delay (); return retval; } #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */ #define EE_CS 0x08 /* EEPROM chip select. */ #define EE_DATA_WRITE 0x02 /* EEPROM chip data in. */ #define EE_DATA_READ 0x01 /* EEPROM chip data out. */ #define EE_ENB (0x80 | EE_CS) #define eeprom_delay() readl(ee_addr) /* EEPROM commands include the alway-set leading bit */ #define EE_WRITE_CMD (5) #define EE_READ_CMD (6) #define EE_ERASE_CMD (7) A piece code for EEPROM 93C46 addr_len = read_eeprom (ioaddr, 0, 8) == 0x8129 ? 8 : 6; for (i = 0; i < 3; i++) ((u16 *) (dev->dev_addr))[i] = le16_to_cpu (read_eeprom (ioaddr, i + 7, addr_len)); static int __devinit read_eeprom ( void *ioaddr, int location, int addr_len) { int i; unsigned retval = 0; void *ee_addr = ioaddr + Cfg9346; int read_cmd = location | (EE_READ_CMD << addr_len); writeb (EE_ENB & ~EE_CS, ee_addr); writeb (EE_ENB, ee_addr); eeprom_delay ();

  24. Outline • Driver framework • Linux network drivers • Device operation • RTL8139 programming • Driver example • A piece of code for 93C46 series • EEPROM, 93C46 64 x 16 bits, 93C66 256 x 16 bits • pci_skeleton.c (for RTL8139)

  25. #include<> of the RTL8139 barrier() printk() byteorder.h module_init() module_exit() Operating System spinlock.h config.h MOD_* MODULE_*() Definitions of I/O port read/write and ioremap() module.h init.h kernel.h delay.h PCI BUS udelay() definition asm/io.h crc32.h pci-skeleton.c 給multicast算ether_crc() pci.h 被間接引入 sched.h (irq,jiffies,capable) slab.h time.h spinlock.h asm/atomic.h skbuff.h PCI defines and prototypes pci_alloc_consistent() pci_resource_*() pci_request_regions() pci_set_master() pci_read_config_word()(err) Network Device mii.h etherdevice.h netdevice.h Definitions for struct net_device register_netdev() netif_*() skbuff.h Definitions for Ethernet eth_type_trans() alloc_ethdev() Definitions for MII_ADVERTISE, MII_LPA ADVERTISE_FULL, LPA_100FULL…

  26. Driver structure of the RTL8139 • pci_module_init() / pci_unregister_driver() • static struct pci_driver netdrv_pci_driver = { • name: "netdrv", • id_table: netdrv_pci_tbl, • probe: netdrv_init_one, • remove: netdrv_remove_one, • #ifdef CONFIG_PM • suspend: netdrv_suspend, • resume: netdrv_resume, • static struct pci_device_id netdrv_pci_tbl[] __devinitdata = { • {0x10ec, 0x8139, PCI_ANY_ID, PCI_ANY_ID, 0, 0, RTL8139 }, • MODULE_DEVICE_TABLE (pci, netdrv_pci_tbl); driver_data (Private, Sq# here) pci_device_id

  27. struct pci_dev *pdev, struct pci_device_id *ent netdrv_init_one() call netdrv_init_board() to get net_device dev, void *ioaddr netdrv_init_board() dev = alloc_etherdev(sizeof()) pci_enable_device (pdev); pci_request_regions (pdev, “pci-sk"); pci_set_master (pdev); Initial net_device dev Set up dev_addr[], irq, base_addr Set up method: dev->open, dev->hard_start_transmit, dev->stop, dev->get_stats, dev->set_multicast_list, dev->do_ioctl, dev->tx_timeout mmio_start = pci_resource_start (pdev, 1); ioaddr = ioremap (mmio_start, len); Soft reset the chip. NETDRV_W8 (ChipCmd, (NETDRV_R8 (ChipCmd) & ChipCmdClear) | CmdReset); identify chip attached to board register_netdev (dev); // ethX PCI device probe functionnetdrv_init_one() Linux invoke when probing 登記I/O port and memory

  28. NETDRV_W?() • /* write MMIO register, with flush */ • /* Flush avoids rtl8139 bug w/ posted MMIO writes */ • #define NETDRV_W8_F(reg, val8) do { writeb ((val8), ioaddr + (reg)); readb (ioaddr + (reg)); } while (0) • #define NETDRV_W16_F(reg, val16) do { writew ((val16), ioaddr + (reg)); readw (ioaddr + (reg)); } while (0) • #define NETDRV_W32_F(reg, val32) do { writel ((val32), ioaddr + (reg)); readl (ioaddr + (reg)); } while (0) • #define NETDRV_W8 NETDRV_W8_F • #define NETDRV_W16 NETDRV_W16_F • #define NETDRV_W32 NETDRV_W32_F • #define NETDRV_R8(reg) readb (ioaddr + (reg)) • #define NETDRV_R16(reg) readw (ioaddr + (reg)) • #define NETDRV_R32(reg) ((unsigned long) readl (ioaddr + (reg)))

  29. Device methods • dev->openintnetdrv_open (struct net_device *dev); • dev->hard_start_transmitint netdrv_start_xmit (struct sk_buff *skb, struct net_device *dev); • dev->stopint netdrv_close (…); • dev->get_statsstruct net_device_stats *netdrv_get_stats (struct net_device *); • dev->set_multicast_listvoid netdrv_set_rx_mode (…); • dev->do_ioctlint netdrv_ioctl (struct net_device *dev, struct ifreq *rq, int cmd); • dev->tx_timeoutvoid netdrv_tx_timeout (struct net_device *dev);

  30. netdrv_hw_start (dev) Soft reset the chip /* Restore our idea of the MAC address. */ NETDRV_W32_F (MAC0 + 0, cpu_to_le32 (*(u32 *) (dev->dev_addr + 0))); NETDRV_W32_F (MAC0 + 4, cpu_to_le32 (*(u32 *) (dev->dev_addr + 4))); NETDRV_W8_F (ChipCmd, (NETDRV_R8 (ChipCmd) & ChipCmdClear) | CmdRxEnb | CmdTxEnb); Setting RxConfig and TxConfig NETDRV_W32_F (RxBuf, tp->rx_ring_dma); init Tx buffer DMA addresses netdrv_set_rx_mode (dev); NETDRV_W16_F (IntrMask, netdrv_intr_mask); netif_start_queue (dev); Up up……netdrv_open() netdrv_open() request_irq (dev->irq, netdrv_interrupt, SA_SHIRQ, dev->name, dev) tx_bufs = pci_alloc_consistent(pdev, TXBUFLEN, &tx_bufs_dma); rx_ring = pci_alloc_consistent(pdev, RXBUFLEN, &rx_ring_dma); netdrv_init_ring (dev); netdrv_hw_start (dev); Set the timer to check for link beat

  31. mclist[0].dmi_addr mclist[1].dmi_addr 31 30 28 26 29 27 25...0 mclist[2].dmi_addr Setup receive mode and multicast hashtable(*set_multicast_list)()netdrv_set_rx_mode() • if (flags & IFF_PROMISC) • AcceptBroadcast | AcceptMulticast | AcceptMyPhys | AcceptAllPhy • mc_filter[1] = mc_filter[0] = 0xffffffff • else if ((mc_count > multicast_filter_limit) || (flags & IFF_ALLMULTI)) • AcceptBroadcast | AcceptMulticast | AcceptMyPhys • mc_filter[1] = mc_filter[0] = 0xffffffff • else • AcceptBroadcast | AcceptMulticast | AcceptMyPhys ether_crc() 63 62 1 0

  32. 0 1 2 3 0 1 2 dirty_tx cur_tx Transmit a packetnetdrv_start_xmit() netdrv_start_xmit() if (skb->len < ETH_ZLEN) skb = skb_padto(skb, ETH_ZLEN); entry = atomic_read (&cur_tx) % NUM_TX_DESC; tx_info[entry].skb = skb; memcpy (tx_buf[entry], skb->data, skb->len); NETDRV_W32 (TxStatus[entry], tx_flag | skb->len); dev->trans_start = jiffies; atomic_inc (&cur_tx); if ((atomic_read (&cur_tx) - atomic_read (&dirty_tx)) >= NUM_TX_DESC) netif_stop_queue (dev);

  33. Interrupt handlingnetdrv_interrupt() • spin_lock (&tp->lock); • status = NETDRV_R16 (IntrStatus); • NETDRV_W16_F (IntrStatus, status); // Acknowledge • Spec says, “The ISR bits are always set to 1 if the condition is present. ” • Spec says, “Reading the ISR clears all. Writing to the ISR has no effect.” • if (status & (PCIErr | PCSTimeout | RxUnderrun | RxOverflow |RxFIFOOver | TxErr | RxErr)) • netdrv_weird_interrupt (dev, tp, ioaddr, status, link_changed); • if (RxOK | RxUnderrun | RxOverflow | RxFIFOOver) • netdrv_rx_interrupt (dev, tp, ioaddr); • if (status & (TxOK | TxErr)) • netdrv_tx_interrupt (dev, tp, ioaddr); • spin_unlock (&tp->lock); ISR 0 1 1 1 0 0 1 1 IMR 0 0 1 1 0 0 1 0 Interrupt

  34. Interrupt handlingnetdrv_tx_interrupt(dev, tp, ioaddr) • dirty_tx = atomic_read (&tp->dirty_tx); • cur_tx = atomic_read (&tp->cur_tx); • tx_left = cur_tx - dirty_tx; • while (tx_left > 0) { • int entry = dirty_tx % NUM_TX_DESC; • int txstatus = NETDRV_R32 (TxStatus[entry]); • if (!(txstatus & (TxStatOK | TxUnderrun | TxAborted))) break; /* It still hasn't been Txed */ • if (txstatus & (TxOutOfWindow | TxAborted)) { /* There was an major error, log it. */ • tp->stats.tx_errors++; • } else { • if (txstatus & TxUnderrun) /* Add 64 to the Tx FIFO threshold. */ • tp->tx_flag += 0x00020000; • tp->stats.tx_bytes += txstatus & 0x7ff; • tp->stats.tx_packets++; • } • dev_kfree_skb_irq (tp->tx_info[entry].skb); • tp->tx_info[entry].skb = NULL; • dirty_tx++; • if (netif_queue_stopped (dev)) • netif_wake_queue (dev); • cur_tx = atomic_read (&tp->cur_tx); • tx_left = cur_tx - dirty_tx; • } • atomic_set (&tp->dirty_tx, dirty_tx);

  35. Interrupt handling Packet receptionnetdrv_rx_interrupt (dev,tp, ioaddr) • rx_ring = tp->rx_ring; • cur_rx = tp->cur_rx; • while ((NETDRV_R8 (ChipCmd) & RxBufEmpty) == 0) { • ring_offset = cur_rx % RX_BUF_LEN; • rx_status = le32_to_cpu (*(u32 *) (rx_ring + ring_offset)); • rx_size = rx_status >> 16; • pkt_size = rx_size - 4; • skb = dev_alloc_skb (pkt_size + 2); • skb->dev = dev; • skb_reserve (skb, 2); /* 16 byte align the IP fields. */ • eth_copy_and_sum (skb, &rx_ring[ring_offset + 4], pkt_size, 0); • skb_put (skb, pkt_size); • skb->protocol = eth_type_trans (skb, dev); • netif_rx (skb); • dev->last_rx = jiffies; • tp->stats.rx_bytes += pkt_size; • tp->stats.rx_packets++; • cur_rx = (cur_rx + rx_size + 4 + 3) & ~3; • NETDRV_W16_F (RxBufPtr, cur_rx - 16); • } • tp->cur_rx = cur_rx; Status packet CRC

More Related