1 / 69

Part III – Wireline Multiuser Basics

Part III – Wireline Multiuser Basics. Prof. John M. Cioffi Dept of EE Stanford University cioffi@stanford.edu. September 9, 2001. March 31, 2001. April 26 2001. Parts 3 and 4: Outline/Schedule. 2:00-2:45 MU Theory 2:45-3:30 channels for wireline 3:30-4:00 Coffee

diella
Download Presentation

Part III – Wireline Multiuser Basics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Part III – Wireline Multiuser Basics Prof. John M. Cioffi Dept of EE Stanford University cioffi@stanford.edu September 9, 2001 March 31, 2001 April 26 2001

  2. Parts 3 and 4: Outline/Schedule • 2:00-2:45 MU Theory • 2:45-3:30 channels for wireline • 3:30-4:00 Coffee • 4:00-4:30 DSL and Ethernet arch • 4:30-5:15 Multiuser improvements • 5:15-5:30 Zeke

  3. Part 3 Outline • Levels of Coordination among Multi Users • GDFE Theory • Solutions • MUD – no coordination • Iterative Waterfilling – Interference Chan • Vectoring • Channels

  4. User 1 Router DSLAMS User 2 User K Controller ? Wireline Multiuser Basics • Goal: Best PHY signals for user sharing of channel • Set spectra/signals, optimization via controller . . .

  5. Ultimate Goal: use of Rate Regions Rlong • Plot of all possible rates of users • Any point in region is possible, but each with different spectra • Varies for each channel Spectral pair 1 Spectral pair 2 Rshort

  6. Wireline Coordination ? • How much coordination among lines is allowed? • None • Spectra, all or some • Signals • Answer: it depends on application (DSL, ethernet) and evolves with time

  7. Shared channel User 1 User 1 FEXT NEXT User 2 User 2 User L User L No Coordination • Multiuser Detectors only (MUD) • Different users could be competitive service providers (different DSLAMS, different modulation) • Unbundled state of art . . . Controller ?

  8. Coordinated Spectra (only) Shared channel User 1 User 1 • “interference problem” in Information Theory • Good, but not optimum, solution known • Iterative waterfilling User 2 User 2 . . . User L User L Controller

  9. Coordinated 1-sided Signals User 1 Shared channel • Multiple access and Broadcast problems • Monopoly Service Provider Router DSLAMS User 2 . . . User L Controller

  10. Coordinated 2-sided Signals • Full Vectoring Problem – private networks (cat 5) • Highest data rates Shared channel Router DSLAMS Router DSLAMS Controller Controller

  11. Part 3 Outline • Coordination Levels • GDFE Theory • Solutions • MUD – no coordination • Iterative Waterfilling – Interference Chan • Vectoring • Channels

  12. n data 1 H Y X + rcvr data 2 data L Block/Packet Transmission channel • Assumes NO NEXT (FDM used to separate up/down • X is input vector of • One or up to L users’ data samples • Coordinated or not, L users x mN dimensions • Y is output vector of • One or more receivers output packets • Coordinated or not, L users x nN dimensions • H is linear coupling, Noise vector is n

  13. SNR decision sequence for packet W X + Y Z B Generalized DFE • W and B are matrix operations on the packets Y and X • Traditional structures become matrices that do not necessarily correspond to convolution • Applies to all single-user and multiple-user situations

  14. Finding the Equivalent Channel X H “good part” - gets through channel Input components best are green “null space” - blocked by channel “null space” - zeroed by design

  15. GDFE Solutions • Always can be combined with good AWGN transmit codes and “green” signal optimization to get best performance • b=c=log(1 +SNRGDFE) • Use good (turbo, LDPC) code on green components • fundamental structure used to analyze (not implement) • Useful one way or another in all the multiple user problems • Introduced Cioffi/Forney, 1996 – see [5]

  16. Part 3 Outline • Coordination Levels • GDFE Theory • Solutions • MUD – no coordination • Iterative Waterfilling – Interference Chan • Vectoring • Channels

  17. No coordination - MUD • Similar to wireless case • Various interference cancellation strategies • Linear • Decision-aided • Each receiver learns or estimates channel from all users • Each receiver attempts to reduce/eliminate signals from all other users while estimating the signal it wants • Other signals may not be orthogonal for many reasons • Intersymbol interference • Interchannel interference (crosstalk) • Wireline case differences (from wireless) • Crosstalkers may be very large or very small, and still significant in all cases • Channel is relatively stationary (usually)

  18. s s n Noise, , 2 n Noise, 2 , H H y y Xmit 1 Xmit 1 Line channel, H + DSL rcvr Line channel, H + DSL rcvr ( ) x ( ) x 1 1 1 1 Xmit 2 Xmit 2 Xtalk filtering, H Xtalk filtering, H + + ( ) 2 x 2 ( ) x 2 2 . . . . . . Xmit L Xmit L Xtalk filtering, H Xtalk filtering, H ( ) x ( ) x L L L L MUD Channel Model • y=Hx + n = H1x1 + H2 x2 …+ n • H=[H1 H2 … HL ]

  19. SNR decision sequence for packet W X + Y Z B (L users) x (1N dimensions) –Generalized DFE • Tries to estimate all users, even if we don’t want them all • Helps estimate the user of interest in no-coordination problem • Best that can be done, given any input spectra • Error propagation can be enormous degradation

  20. Error Prop Fix: Iterative Decoding h1,1 Channel output Decoder 1 (prob of x1 symbol) • Compute probabilities, rather than hard decisions • when done iterating, then do hard decision • Effectively achieves level of performance of no-error GDFE/capacity p1 Hard Decison x1 User 1 + + x2 n User 2 noise h1,2 Hard Decison Decoder 2 (prob of x2 symbol) p2 (typically not implemented)

  21. Soft vs Hard Canceller [18] Soft symbols • ciis average value of xi, computed from p.d. Hard decisions Soft or hard x3 +

  22. 3 step iteration • Compute new soft output • compute probability distribution from soft outputs for each output dimension • compute new soft symbol and variance • Do it again and again, cycling through estimates of all users’ signals x

  23. Example for MUD: HPNA into VDSL CO • No signal necessarily much larger than another • Error propagation would destroy GDFE alone • Iterative decoding with GDFE works at near optimum levels (I.e., as if there were no error prop.) vdsl hpna vdsl telco hpna home

  24. Optimum Detector • 6 tones of 256 zeroed in 5-10 MHz band 8 Mbps] HLAN 26 Mbps] VDSL

  25. Example: DSL and HPNA • VDSL and HPNA both share 5-10 MHz on twisted pair • Use GDFE concept and soft-cancellation at rcvr for VDSL • Works like HPNA wasn’t there (mutliuser capacity on phone line is 200 Mbps vs 20 Mbps when other user is Gaussian noise)

  26. Part 3 Outline • Coordination Levels • GDFE Theory • Solutions • MUD – no coordination • Iterative Waterfilling – Interference Chan • Vectoring • Channels

  27. Interference Channel – Spectral Balancing • No transmit or receive signal coordination • Only spectra can be designed jointly • Only cases for which opt. solution is known are • 1N dimensions by L users - broadcast • L by 1N – multiple access • 1N by 1N – single user = “Water Filling” • General case, a good (not nec opt) solution is known as “iterative waterfilling”

  28. Sub optimal Solution Shared channel GDFE 1 GDFE 1 • GDFE on each receiver for all L users • Best for any given spectra of all users • Don’t know best spectra for set of users • Try to optimize anyway using iterative waterfilling GDFE 2 GDFE 2 . . . GDFE 3 GDFE L Controller

  29. Waterfilling • Waterfilling is known optimum on single-user channel NSR(f) S(f) /g(f)=  |N(f)/H(f)|2

  30. Iterative Waterfilling [15],[16] • Each channel considers all others to have fixed spectra • Can start with flat on all • Waterfilling executed for user 1 • New spectrum for user 1 replaces old • Waterfilling executed for user 2 with new spectra for 1 • New spectra for user 2 replaces old • … user N • Recycle a few times • Converges – close to optimum solution for Inteference channel – nearly maximizes sum of all rates

  31. Generation of Rate Regions Rlong • Each user has power limit • For each user • Lower the power limit in IterWater and get increased rates on others • Sketch N-dimensional rate region by running IterWater for many different power combinations • Check if desired rate is in region Spectral pair 1 Spectral pair 2 Rshort

  32. Part 3 Outline • Coordination Levels • GDFE Theory • Solutions • MUD – no coordination • Iterative Waterfilling – Interference Chan • Vectoring • Channels

  33. Multiple Access – Up Link User 1 Shared Channel H LN x LN • GDFE at one side with H=[H1 H2 … HL] • Vector receiver, with synch-DMT, LxL GDFE • Best Solution now known – [15] Yu, Rhee, Cioffi (only FDM when there is only one receiver [14] – more complicated than that here) • May have all L users on each tone • GDFE separates them at DSLAM • May have error propagation, so iterative decoding necessary GDFE DSLAM User 2 . . . User L Controller

  34. Input Spectra • Can again be computed by iterative waterfilling across N tones • known optimum in this multiple-access case • Each tone is L x L GDFE receiver with DMT modulation on channel • Can approximately compute a lower bound on rate region using iterative waterfilling and varying powers on each channel as in spectral balancing

  35. Broadcast Downlink simple 1 Shared Channel H LN x LN • Optimum known (solved after 30 yrs in 2001) • More complicated version of IterWater • See Wei Yu recent work [17] , iterative solution of Ricatti eqn • Achieves nearly same performance as multiple access for most wireline cases, but optimization occurs with precoder at transmit side to leave each receiver independent – GDFE at each receiver is diagonal (no feedback) and is slicer for each user. Vector DSLAM Vector precoder simple 2 . . . simple L Controller

  36. Ginis/Negi QR Simplification of Vectored GDFE SNR • ZF-GDFE close to MMSE-GDFE on wireline channels (max rate sum) • FEXT from any source is less than on-line signal from that source • H=QR (orthogonal, triangular) • Applies directly to Multiple Access Uplink Problem for each tone decision sequence for packet W=Q’ X + Y Z B=R

  37. Vectored Transmitter - downlink • Vector version of Tomlinson precoder, done for each tone independently • Prewarps transmitted signal to avert FEXT X x Q’ + X’ mod I-R

  38. Full Vectoring Solution – SVD Y • H=M’LF (M,F orthogonal, L diagonal) • Singular value decomposition • Vectored VDSL or VDMT • Always gets max rate-sum capacity • QR is close on DSL channels, but not in all situations • Easy to implement on per-tone basis • MIMO Echo cancellation possible (so full band) decision sequence for packet X X M H W=F’

  39. Part 3 Outline • Coordination Levels • GDFE Theory • Solutions • MUD – no coordination • Iterative Waterfilling – Interference Chan • Vectoring – MA, Broadcast • Full Vectoring solution • Channels

  40. ADSL Loops d d 3-5 mile loops loops with bridge taps

  41. Crosstalk phone line 1 NEXT FEXT phone line 2 Dominant noises, increased coupling at higher frequencies - must be mitigated in design NEXT - 10-13 f1.5 ; FEXT - 10-19 d |H(f)|2 f2

  42. Other Noises • Radio Noise, AM, HAM • 1 mW differential into rcvr • must reject HAM by 70-90 dB (VDSL) and AM by 20-40 dB (ADSL) • Impulse Noise • 10’s millivolts • 100’s microseconds • narrowband (high amplitude) • broadband (low amplitude)

  43. no signal allowed 2 MHz 3.5 MHz 7 MHz 10 MHz -60 dBm/Hz signal allowed -80 dBm/Hz frequency Radio Emissions • like crosstalk, except into radio receivers • VDSL amateur (HAM) bands Public Safety bands • transmit in discontinuous bands

  44. MIMO Line Quantities [3] • Matrix Channel Xfer • Individual lines i=j • Magnitude profiles (i.e., no phase information) • Virtual Binder Group ] [ ( ) ) ( = H f H f ij = = 1 ,..., ; 1 ,..., i K j K

  45. Noises [3],[4] • Noises are “unknown” crosstalkers and thermal/radio • Psd N(f) • Frequency bandwidth of measurement • Time interval for measurement • Requisite accuracy

  46. Source Information [3],[5] • Clock offsets – can be determined at various points for virtual binder lines • Transmit power level – needs reporting

  47. Channel ID 1 nk • Estimate gains at several frequencies • Estimate noise variances at same freqs + Size-N IFFT (with prefix) + pk + Xn Size-N FFT + + En $ P - n

  48. Gain Estimation • Divide/average channel-out by known in • Need about L=40 symbols of training to reduce gain estimation error to .1 dB Y L 1 å ˆ = , l n P n L X = 1 l , l n

  49. Noise Estimation • Use Errors from Gain estimation • Need L=4000 for .1 dB error • SNR is then gain-squared/noise estimate L 1 å 2 s × 2 = ˆ E 1 , n n L = 1 l

  50. MIMO Complications • Training may not be available • Use actual data • Different systems may not have same clock • Interpolation problem

More Related