1 / 56

Collins I-  4 lines

Collins I-  4 lines. Describe three things you know about the heart. Agenda—5/6/13. Circulatory notes Heart diagram. The Circulatory System. The Heart, Blood Vessels, Blood Types. The Closed Circulatory System.

diep
Download Presentation

Collins I-  4 lines

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Collins I- 4 lines Describe three things you know about the heart

  2. Agenda—5/6/13 • Circulatory notes • Heart diagram

  3. The Circulatory System The Heart, Blood Vessels, Blood Types

  4. The Closed Circulatory System • Humans have a closed circulatory system, typical of all vertebrates, in which blood is confined to vessels and is distinct from the interstitial fluid. • The heart pumps blood into large vessels that branch into smaller ones leading into the organs. • Materials are exchanged by diffusion between the blood and the interstitial fluid bathing the cells.

  5. The Cardiovascular System • Three Major Elements – Heart, Blood Vessels, & Blood • 1. The Heart- cardiac muscle tissue • highly interconnected cells • four chambers • Right atrium • Right ventricle • Left atrium • Left ventricle

  6. Pathway of the blood • Superior Vena Cava • Right Atrium • Tricuspid Valve • Right Ventricle • Pulmonary Semilunar Valve • Lungs • Pulmonary Vein • Left Atrium • Bicuspid Valve • Left Ventricle • Aortic Semilunar Valve • Aorta • To the bodies organs & cells

  7. Circuits • Pulmonary circuit • The blood pathway between the right side of the heart, to the lungs, and back to the left side of the heart. • Systemic circuit • The pathway between the heart and the body cells

  8. The Cardiovascular System 2. Blood Vessels -A network of tubes • Arteriesarterioles move away from the heart • Elastic Fibers • Circular Smooth Muscle • Capillaries – where gas exchange takes place. • One cell thick • Serves the Respiratory System • VeinsVenules moves towards the heart • Skeletal Muscles contract to force blood back from legs • One way valves • When they break - varicose veins form

  9. The Cardiovascular System 3. The Blood • Plasma Liquid portion of the blood. Contains clotting factors, hormones, antibodies, dissolved gases, nutrients and waste

  10. The Cardiovascular System • The Blood B. Erythrocytes - Red Blood Cells • Carry hemoglobin and oxygen. Do not have a nucleus and live only about 120 days. • Can not repair themselves.

  11. The Cardiovascular System • The Blood C. Leukocytes – White Blood cells • Fight infection and are formed in by the bone marrow • Five types – neutrophils, lymphocytes, eosinophils, basophils, and monocytes.

  12. The Cardiovascular System The Blood D. Thrombocytes – Platelets. • These are cell fragment that are formed in the bone marrow • Clot Blood by sticking together – via protein fibers called fibrin.

  13. Disorders of the Circulatory System • Anemia - lack of iron in the blood, low RBC count • Leukemia - white blood cells proliferate wildly, causing anemia • Hemophilia - bleeder’s disease, due to lack of fibrinogen in thrombocytes • Heart Murmur - abnormal heart beat, caused by valve problems • Heart attack - blood vessels around the heart become blocked with plaque, also called myocardial infarction

  14. Unit 9 – The Heart Cardiovascular System The Heart

  15. Functions of the Heart • Generating blood pressure • Routing blood • Heart separates pulmonary and systemic circulations • Ensuring one-way blood flow • Heart valves ensure one-way flow • Regulating blood supply • Changes in contraction rate and force match blood delivery to changing metabolic needs

  16. Size, Shape, Location of the Heart • Size of a closed fist • Shape • Apex: Blunt rounded point of cone • Base: Flat part at opposite of end of cone • Located in thoracic cavity in mediastinum

  17. Heart Cross Section

  18. Pericardium

  19. Heart Wall • Three layers of tissue • Epicardium: A serous membrane, smooth outer surface of heart • Myocardium: Middle layer composed of cardiac muscle cells and is responsible for heart contracting • Endocardium: Smooth inner surface of heart chambers

  20. Heart Wall

  21. External Anatomy • Four chambers • 2 atria • 2 ventricles • Auricles • Major veins • Superior vena cava- • Pulmonary veins- • Major arteries • Aorta • Pulmonary trunk

  22. External Anatomy

  23. Coronary Circulation

  24. Heart Valves • Atrioventricular • Tricuspid • Bicuspid or mitral • Semilunar • Aortic • Pulmonary • Prevent blood from flowing back

  25. Heart Valves

  26. Function of the Heart Valves

  27. Blood Flow Through Heart

  28. Systemic and PulmonaryCirculation

  29. Heart Skeleton • Consists of plate of fibrous connective tissue between atria and ventricles • Fibrous rings around valves to support • Serves as electrical insulation between atria and ventricles • Provides site for muscle attachment

  30. Cardiac Muscle • Elongated, branching cells containing 1-2 centrally located nuclei • Contains actin and myosin myofilaments • Intercalated disks: Specialized cell-cell contacts • Desmosomes hold cells together and gap junctions allow action potentials • Electrically, cardiac muscle behaves as single unit

  31. Conducting System of Heart

  32. Electrical Properties • Resting membrane potential (RMP) present • Action potentials • Rapid depolarization followed by rapid, partial early repolarization. Prolonged period of slow repolarization which is plateau phase and a rapid final repolarization phase • Voltage-gated channels

  33. Action Potentials inSkeletal and Cardiac Muscle

  34. SA Node Action Potential

  35. Refractory Period • Absolute: Cardiac muscle cell completely insensitive to further stimulation • Relative: Cell exhibits reduced sensitivity to additional stimulation • Long refractory period prevents tetanic contractions

  36. Electrocardiogram • Action potentials through myocardium during cardiac cycle produces electric currents than can be measured • Pattern • P wave • Atria depolarization • QRS complex • Ventricle depolarization • Atria repolarization • T wave: • Ventricle repolarization

  37. Cardiac Arrhythmias • Tachycardia: Heart rate in excess of 100bpm • Bradycardia: Heart rate less than 60 bpm • Sinus arrhythmia: Heart rate varies 5% during respiratory cycle and up to 30% during deep respiration • Premature atrial contractions: Occasional shortened intervals between one contraction and succeeding, frequently occurs in healthy people

  38. Alterations in Electrocardiogram

  39. Agenda4/30/12---Day 2 • Hand in projects • Cardiac Cycle Notes and interactive lesson

  40. Collins I6 lines • Explain the path the blood takes through the heart starting with the Superior and Inferior vena cava…

  41. Cardiac Cycle • Heart is two pumps that work together, right and left half • Repetitive contraction (systole) and relaxation (diastole) of heart chambers • Blood moves through circulatory system from areas of higher to lower pressure. • Contraction of heart produces the pressure

  42. Cardiac Cycle

  43. SSR • First 10 minutes

  44. Events during Cardiac Cycle

  45. Heart Sounds • First heart sound or “lubb” • Atrioventricular valves and surrounding fluid vibrations as valves close at beginning of ventricular systole • Second heart sound or “dupp” • Results from closure of aortic and pulmonary semilunar valves at beginning of ventricular diastole, lasts longer • Third heart sound (occasional) • Caused by turbulent blood flow into ventricles and detected near end of first one-third of diastole

  46. Location of Heart Valves

  47. Mean Arterial Pressure (MAP) • Average blood pressure in aorta • MAP=CO x PR • CO is amount of blood pumped by heart per minute • CO=SV x HR • SV: Stroke volume of blood pumped during each heart beat • HR: Heart rate or number of times heart beats per minute • Cardiac reserve: Difference between CO at rest and maximum CO • PR is total resistance against which blood must be pumped

  48. Factors Affecting MAP

More Related