1 / 32

Outline The motivation to study this reaction Experimental setup

Outline The motivation to study this reaction Experimental setup Choice of the measurement parameters Possible data analysis approach GEANT4-simulations Ongoing work and summary. The motivation to study this reaction. comparably small amount of 6 Li has been

Download Presentation

Outline The motivation to study this reaction Experimental setup

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Outline • The motivationtostudythisreaction • Experimental setup • Choice ofthemeasurementparameters • Possibledataanalysisapproach • GEANT4-simulations • Ongoingworkandsummary

  2. The motivationtostudythisreaction • comparably small • amount of 6Li has been • synthesized during Big • Bang nucleosynthesis • productionmainlyby • d(α,γ)6Li • in laterperiodsfurther • depletionand • productionof Li may • haveoccurred • expected: noor variable • Li abundance in stars [takenfrom M. Pospelovand J. Pradler, Annu.Rev.Nucl.Sci. 2010, 60:539-568]

  3. The motivationtostudythisreaction BBN prediction • constant amount of • Li is found in stars • of different metallicity • (which is the content of • heavy elements) • prediction, usingknown • nuclearreactionrates: • threeordersof • magnitudeless6Li • isthis Li primordial? • do wehavewrong • nuclearreactionrates? 7Li 6Li BBN prediction [datafrom M. Asplund et al., Astrophys. J. 644, 229 (2006)]

  4. The motivationtostudythisreaction • Directmeasurements so far: • Robertson et al. 1991, E > 1 MeV • Mohr et al. 1996, aroundthe • resonanceat 0.7 MeV • Recentindirectmeasurements • (high energycoulombbreakup) • byHammache et al. at GSI • GSI workprovidedupperlimits, • due tonuclearbreakupcontribution • directmeasurementat LUNA • ispossible LUNA BBN energyregion 0 0.5 1.0 MeV [takenfrom F. Hammache et al., Phys. Rev. C 82, 065803 (2010)]

  5. Experimental setup • 4He beam on a windowless D2 gas target • beam currentmeasurementbycalorimeter • HPGedetectorforγdetection, Si detectorforprotons pumpingstages 3rd 4∙10-7mbar 2nd 6∙10-7mbar 1st 8∙10-4mbar Accelerator D2 gas inlet Si detector calorimeter Magnet target 0.3 mbar HPGedetector (137%, ULB) tosolid target

  6. Aboutthe experimental setup

  7. Experimental setup The dataaquisitionsystem: • Ortec Maestro fortheHPGeandthesilicondetector • Caen N1728B digitizer („TNT2“) fortheHPGedetector (working in parallel) • calorimeterand gas targetdataarestoredpermanently • Data obtainedsince September 2010: • 0.2 mbar, 400 keV: 200 h, 185 C • 0.3 mbar, 280 keV: 490 h, 540 C • 0.3 mbar, 400 keV: 440 h, 520 C • about 20 daysofnaturalbackgrounddata

  8. Choice of the measurement parameters • Main backgroundsources: • 238U anddaughternuclidesfromthesurrounding rock • 232Th anddaughternuclidesfromdirtandfromleadbricks • but muchmoreimportantisthe beam inducedbackground: 2H(α,α)2H Rutherford scattering • also 2H(2H,p)3H • occurswithsimilarcrosssection • monitoringofneutronproduction 2H(2H,n)3He d+d - reaction

  9. Choice of the measurement parameters TNT2 data, lab backgroundsubtracted, normalized

  10. Choice of the measurement parameters

  11. Possible data analysis approach • Whereisthed(α,γ)6Li gammasignalexpectedtobefound? • verybroadsignal, positiondepends on beam energy • lowexpectedsignalcounting rate in Gedetector (max. 2 counts / hour) • similarnaturalbackground rate insidethefullyshieldedsetup (400 keV beam) Doppler shift (± 16 keV) energyofrecoiled6Li (0.14 keV)

  12. Possible data analysis approach 1549 keV 63Cu(n,n‘γ) 280 keV ROI 400 keV ROI Howcan a yield beextracted? 1623 keV 65Cu(n,n‘γ) TNT2 data, May/June 2011, lab backgroundsubtracted, normalized

  13. Possible data analysis approach • Beam inducedbackground • subtractionapproach • But: • bothspectratobesubtractedhavetobenormalized (toincludethe same beam • inducedbackground) • due to different neutronenergyspectra, thenormalizationfactor • depends on thegammaenergy 1623 keV 65Cu

  14. Possible data analysis approach • choiceofseveral „flat“ regionstocalculate beam inducedbackgroundratiosalongthespectrum 200 600 1000 1400 1800 2200

  15. Possible data analysis approach „Flat“ regions: (with May/June 2011 data; naturalbackgroundissubtracted)

  16. Possible data analysis approach Plot of flat regioncontents, normalizedbychargeandregionwidth

  17. Possible data analysis approach • the beam inducedbackgroundratiodepends on the • regionenergy!

  18. Possible data analysis approach • How to find theenergydependenceofthe beam inducedbackground? • Basic idea: • trying fit functions on theplottedregioncontentratios • weightingtheresultsusingtheχ²/DoFvalue • calculating a normalizationfactorfor Eγ= 1580 keV • (between 280 keVand 400 keV ROIs)

  19. Possible data analysis approach

  20. Possible data analysis approach • Yield calculation: • 400 keV ROI: 1589.6…1621.5 keV 280 keV ROI: 1549.7…1580.6 keV • hasbeendoneforbothmeasurementcampaigns in 2011 • delivers positive yieldsforboth beam energies in spring • delivers negative resultsornoyieldforthe fall measurements •  Isthebackgroundshapeinsidethe ROIs not stable in time?

  21. Possible data analysis approach 0.3 mbar TNT2 data 400 keVand 280 keV rawspectra sumofcounts in 200…4000 keV normalizedby time Counts/s fall 2011 spring 2011 Charge (C)

  22. Possible data analysis approach Analysisconstraints

  23. GEANT4-simulations • measurement • andsimulation • are in good • agreement! • simulationsdone • by Z. Elekes

  24. GEANT4-simulations The beam inducedbackgroundlevelhasdoubledwithin 1000 C of beam charge. Hypothesis: As the gas targetpressurehas not beenchanged, thiseffectis due todeuteriumimplantation in metalsurfaces: • targetcollimator • steeltubealongthe beam (was alwaysintendedtostopdeuterons) • beam calorimeter • Howaffects a changingneutronsourcegeometrythemeasuredγ-spectra?

  25. GEANT4-simulations beam inducedbackgroundshape depends on the neutronsourcegeometry!

  26. GEANT4-simulations 0.3 mbar Maestro dataofsilicondetector, compared withsimulationresults (by P. Corvisiero)

  27. Ongoingwork The next beam time isscheduledfor March and April 2012. Intentionsandgoals: • exchangingdeuteratedsetupcomponents • measurementwith an AmBeneutronsourcetocomparewithsimulationresults • increasingamountofd(α,γ)6Li data • Si detectorresolutionandrecalibrationworks • furtherworktounderstandthebackground in theγ-detector • dataanalysis

  28. Summary • nodirectmeasurementoftheastrophysical S-factoratlowenergiesyet • newdatacouldanswer still open questionsaboutthe6Li origin in ouruniverse • the LUNA experimentat LNGS isabletomeasureverylowcrosssections • a possibledataanalysisapproachfor a small, broadsignalhasbeendeveloped • the beam inducedbackgroundneedstobestudiedfurther • GEANT4 simulationsarehelpful

  29. Thank you for your attention! The LUNA collaboration: A. Bellini, D. Bemmerer, C. Broggini, A. Caciolli, P. Corvisiero, H. Costantini, Z. Elekes, M. Erhard, A. Formicola, Zs. Fülöp, G. Gervino, A. Guglielmetti, C. Gustavino, Gy. Gyürky, G. Imbriani, M. Junker, A. Lemut, M. Marta, C. Mazzocchi, R. Menegazzo, P. Prati, V. Roca, C. Rolfs, C. Rossi Alvarez, E. Somorjai, O. Straniero, F. Strieder, T. Szücs, F. Terrasi, H.P. Trautvetter, D. Trezzi This workissupportedby DFG (BE 4100/2-1).

More Related