1 / 69

roll up our sleeves & prove a few things

Applications of randomized techniques in quantum information theory Debbie Leung, Caltech & U. Waterloo. roll up our sleeves & prove a few things. Unifying & Simplifying Measurement-based Quantum Computation Schemes Debbie Leung, Caltech & U. Waterloo. Light, 95% math free

dieter
Download Presentation

roll up our sleeves & prove a few things

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Applications of randomized techniques in quantum information theoryDebbie Leung, Caltech & U. Waterloo roll up our sleeves & prove a few things

  2. Unifying & Simplifying Measurement-based Quantum Computation Schemes Debbie Leung, Caltech & U. Waterloo Light, 95% math free may contain traces of physics

  3. Unifying & Simplifying Measurement-based Quantum Computation Schemes Debbie Leung, Caltech & U. Waterlooquant-ph/0404082,0404132Joint work with Panos Aliferis, Andrew Childs, & Michael NielsenHashing ideas from Charles Bennett, Hans Briegel, Dan Browne, Isaac Chuang, Daniel Gottesman, Robert Raussendorf, Xinlan Zhou

  4. Universal QC schemes using only simple measurements:

  5. : |+i = |0i+|1i , Z : controlled-Z Z X Z Z Universal QC schemes using only simple measurements: 1) One-way Quantum Computer “1WQC” (Raussendorf & Briegel 00) 1WQC: • Universal entangled initial state • 1-qubit measurements Cluster state: Can be easily prepared by (1) |+i + controlled-Z, or ZZ, or (2) measurements of stabilizers e.g.

  6. Basic idea in each box: j U c,d Bell j0i ⋮ j0i XcZdUj = = B = = = = u B B = = = = u u B B Universal QC schemes using only simple measurements: 2) Teleportation-based Quantum Computation “TQC” (Nielsen 01, L 01,03) TQC: • Any initial state (e.g. j00L0i) • 1&2-qubit measurements

  7. j0i ⋮ j0i = = B = = = = u B B = = = = u u B B Universal QC schemes using only simple measurements: 1) One-way Quantum Computer “1WQC” (Raussendorf & Briegel 00) 2) Teleportation-based Quantum Computation “TQC” (Nielsen 01, L 01,03) 1WQC: • Universal entangled initial state • 1-qubit measurements TQC: • Any initial state (e.g. j00L0i) • 1&2-qubit measurements

  8. strawberry ice-cream & strawberry smoothy Qn: are 1WQC & TQC related & can they be simplified? Here: derive simplified versions of both using “1-bit-teleportation” (Zhou, L, Chuang 00) (simplified version of Gottesman & Chuang 99) Ans: 1WQC = repeated use of the teleportation idea Then a big simplification suggests itself. Rest of talk: 0. Define simulation 1. Review 1-bit-teleportation milk strawberry 2. Derive intermediate simulation circuits (using much more than measurements) for a universal set of gates 3. Derive measurement-only schemes freeze & mix or mix & freeze

  9. 00 : : 0 0/1 U5 U3 U1 0/1 : U4 : Un U2 0/1 time Standard model for universal quantum computation : DiVincenzo 95 Computation: gates from a universal gate set initial state measure Wanted: a notion of “composable” elementwise-simulation

  10. j XaZb k j XcZd U (a,b) e.g. U simulates itself  j,a,b UXaZbj = XcZdUj  U  Clifford group Simulation of componentsup to known “leftist” Paulis e.g. U  j (input to U),  XaZb (arbitrary known Pauli operator) X,Z: Pauli operators, a,b,c,d {0,1} Intended evolution Simulation j U j U (c,d) only depends on (a,b,k) U simulates I  j,a,b UXaZbj = XcZdj  U  Pauli group e.g.

  11. Simulation of circuitup to known “leftist” Paulis Composing simulations to simulate any circuit : 00 : : 0 0/1 U5 U3 U1 0/1 : Un U2 0/1

  12. Simulation of circuitup to known “leftist” Paulis Composing simulations to simulate any circuit : 00 : : 0 XaZb 0/1 U5 U3 U1 U1 XaZb 0/1 : Un XaZb U2 U2 0/1 State = (Xa 0)  (Xa 0)  

  13. Simulation of circuitup to known “leftist” Paulis Composing simulations to simulate any circuit : 00 : : 0 XaZb 0/1 U5 U3 U1 XaZb 0/1 : Un XaZb U2 0/1 State = (Xa 0)  (Xa 0)  

  14. U1 U2 Simulation of circuitup to known “leftist” Paulis Composing simulations to simulate any circuit : 00 : : 0 XaZb 0/1 U5 U3 XaZb 0/1 : Un XaZb 0/1 State = (Xa 0)  (Xa 0)   →XcZdU2U10  0  

  15. Simulation of circuitup to known “leftist” Paulis Composing simulations to simulate any circuit : 00 : : 0 XcZd 0/1 U5 U3 U1 XcZd 0/1 : Un XaZb U2 0/1 State = (Xa 0)  (Xa 0)   →XcZdU2U10  0   →Xe ZfU3U2U10  0  

  16. Simulation of circuitup to known “leftist” Paulis Composing simulations to simulate any circuit : 00 : : 0 XaZb 0/1 U5 U3 U1 XaZb 0/1 XaZb : Un XaZb U2 0/1

  17. Simulation of circuitup to known “leftist” Paulis Composing simulations to simulate any circuit : 00 : : 0 XaZb 0/1 U5 U3 XaZb U1 0/1 XaZb : Un XaZb U2 0/1 Propagate errors without affecting the computation. Final measurement outcomes are flipped in a known (harmless) way.

  18. 1-bit teleportation

  19. H c d d c X-rtation (XT) |i d |0i H Xd|i Z-Telepo (ZT) Teleportation without correction |i H c |0i Zc|i NB. All simulate “I”. CNOT: Hadamard: Recall: Pauli’s: I, X, Z H

  20. Simulating a universal set of gates: Z & X-rotations (1-qubit gates) & controlled-Z with mixed resources.

  21. Goal: perform Z rotation eiqZ

  22. Z-Telep (ZT) Goal: perform Z rotation eiqZ |i H c |0i Zc|i

  23. XaZb|i ei(-1)aqZ H c |0i Zcei(-1)aqZ XaZb|i = Xa Zc+beiqZ|i Z-Telep (ZT) Goal: perform Z rotation eiqZ |i H c |0i Zc|i XaeiqZ Input state = ei(-1)aqZ XaZb|i

  24. Z-Telep (ZT) Simulating a Z rotation eiqZ XaZb|i |i ei(-1)aqZ H c H c |0i Xa Zc+beiqZ|i |0i Zc|i

  25. Z-Telep (ZT) Simulating a Z rotation eiqZ XaZb|i |i ei(-1)aqZ H c H c |0i Xa Zc+beiqZ|i |0i Zc|i X-Telep (XT) Simulating an X rotation eiqX XaZb|i ei(-1)bqX |i d d |0i Xa+d ZbeiqX|i |0i H H Xd|i

  26. Simulating a C-Z Xa1Zb1 Xa2Zb2|i d1 d2 |0i H |0i H Xa1+d1Zb1+a2+d2Xa2+d2Zb2+a1+d1 C-Z|i X-Telep (XT) |i d |0i H Xd|i 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 -1 C-Z: =

  27. From simulation with mixed resources to TQC -- QC by 1&2-qubit projective measurements only

  28. Simulating a Z rotation eiqZ XaZb|i ei(-1)aqZ H c |0i Xa Zc+beiqZ|i

  29. U H j V† V = j U†ZU U†XU V†ZV k V†ZkV O = measurement of operator O Z Simulating a Z rotation eiqZ XaZb|i ei(-1)aqZ H c Xa+a2 Zc+beiqZ|i “Xa2” |0 up to Xa2 An incomplete 2-qubit measurement, followed by a complete measurement on the 1st qubit . A little fact:

  30. Simulating a Z rotation eiqZ XaZb|i c Xa+a2 Zc+beiqZ|i “Xa2”

  31. Simulating a Z rotation eiqZ XaZb|i ei(-1)aqZ H c Xa+a2 Zc+beiqZ|i “Xa2” Simulating an X rotation eiqX XaZb|i ei(-1)bqX d Xa+d Zb+b2eiqX|i “Zb2”

  32. Xa1’ Zb1’  Xa2’ Zb2’ C-Z|i Simulating a Z rotation eiqZ XaZb|i ei(-1)aqZ H c Xa+a2 Zc+beiqZ|i “Xa2” Simulating an X rotation eiqX XaZb|i ei(-1)bqX d Xa+d Zb+b2eiqX|i “Zb2” Xa1Zb1 Xa2Zb2|i Simulating a C-Z d1 d2 |0i H |0i H

  33. Xa1’ Zb1’  Xa2’ Zb2’ C-Z|i Simulating a Z rotation eiqZ XaZb|i ei(-1)aqZ H c Xa+a2 Zc+beiqZ|i “Xa2” Simulating an X rotation eiqX XaZb|i ei(-1)bqX d Xa+d Zb+b2eiqX|i “Zb2” Xa1Zb1 Xa2Zb2|i Simulating a C-Z d1 d2 |0i H |0i H

  34. Xa1’ Zb1’  Xa2’ Zb2’ C-Z|i Simulating a Z rotation eiqZ XaZb|i ei(-1)aqZ H c Xa+a2 Zc+beiqZ|i “Xa2” Complete recipe for TQC based on 1-bit teleportation Simulating an X rotation eiqX XaZb|i ei(-1)bqX d Xa+d Zb+b2eiqX|i “Zb2” Xa1Zb1 Xa2Zb2|i Simulating a C-Z d1 d2

  35. H H Z j = j X Z Z k Zk Aside: universality of 2-qubit meas is immediate! Previous TQC with full teleportation: Bell Bell c,d 4-qubit state to be prepared 2-qubit gate to be teleported Simplified TQC with 1-bit teleportation: d1 d2 |0i H |0i H 2-qubit state to be prepared

  36. With slight improvements (see quant-ph/0404132): n-qubitm C-Z up to (m+1)n1-qubit gatescircuitSufficient 2m 2-qubit meas 2m+n 1-qubit meas in TQC

  37. Deriving 1WQC-like schemes using gate simulations obtained from 1-bit teleportation 1WQC: • Universal entangled initial state •Feedforward 1-qubit measurement

  38. General circuit: ... Alternating: (1) 1-qubit gates (2) nearest neighbor optional C-Z

  39. Rz Rz Rz Rz Rz Rz Rx Rx Rx Rx Rx Rx Rz Rz Rz Rz Rz Rz General circuit: Rz Rz Rz Rz ... Alternating: (1) 1-qubit gates (2) nearest neighbor optional C-Z Euler-angle decomposition Z rotations + optional C-Z – X rotations – Z rotations + optional C-Z – X rotations – .... simulate these 2 things

  40. Xa1 Zb1+a2k Xa2 Zb2 +a1k C-Zk|i Xa1 Zc1+b1+a2k Xa2 Zc2+b2+a2k eiq1Zeiq2ZC-Zk|i Simulating an X rotation eiqX XaZb|i ei(-1)bqX d |0i Xa+d ZbeiqX|i H Adding an optional C-Z right before Z rotations ei(-1)a1q1Z H c1 Xa1Zb1 Xa2Zb2|i ei(-1)a2q2Z c2 H |0i |0i Will derive a method for optional C-Z later : the ability to choose to simulate I or C-Z

  41. Chaining up C-Z+Z rotations –-- X rotations –-- C-Z+Z rotations –-- X rotations ... c1 c1’ c2’ c2 ei(-1)bqX d1 ei(-1)bqX d2 |0i H |0i H optional ei(-1)a1q1Z H |i ei(-1)a2q2Z H |0i |0i ei(-1)a1q1Z H ei(-1)a2q2Z H |0i |0i ei(-1)bqX d1’ ei(-1)bqX d2’ |0i H |0i H

  42. Chaining up C-Z+Z rotations –-- X rotations –-- C-Z+Z rotations –-- X rotations ... = c1 c1’ H H c2 c2’ optional Use H|0i = |+i, HH=I ei(-1)a1q1Z H |i ei(-1)a2q2Z H |0i H H |0i H H ei(-1)bqX H H d1 H H ei(-1)bqX d2 |0i H |0i ei(-1)a1q1Z H H ei(-1)a2q2Z H |0i H H |0i H H ei(-1)bqX d1’ H H H ei(-1)bqX H d2’ |0i H |0i H

  43. Chaining up C-Z+Z rotations –-- X rotations –-- C-Z+Z rotations –-- X rotations ... c1 c1 c2 c2 |i = |+i Let , optional Then, initial state = ei(-1)a1q1Z H |i ei(-1)a2q2Z H |+i |+i ei(-1)bqX H d1 H ei(-1)bqX d2 |+i |+i ei(-1)a1q1Z H ei(-1)a2q2Z H |+i |+i ei(-1)bqX d1 H ei(-1)bqX H d2 |+i |+i

  44. Circuit dependent initial state: 3 qubits, 8 cycles of C-Z + 1-qubit rotations C-Z Z-rotations X-rotations

  45. Simulating an optional C-Z Recall : simulating a C-Z Xa1Zb1 Xa2Zb2|i d1 d2 |0i H Xa1’ Zb1’  Xa2’ Zb2’ C-Z|i |0i H

  46. Simulating an optional C-Z Recall : simulating a C-Z d1 d2 |0i H |0i H 1. Redrawing the 2nd input to the bottom: d1 |0i H |0i H d2

  47. Xj Simulating an optional C-Z 2. Use symmetry: Just measures the parity of the 2 qubits j j It is equal to 1. Redrawing the 2nd input to the bottom: d1 |0i H |0i H d2

  48. Xj d2 d1 Simulating an optional C-Z 2. Use symmetry: Just measures the parity of the 2 qubits j j It is equal to |0i H |0i H

  49. d2 d1 Simulating an optional C-Z |0i H |0i H

  50. 3. Use = H H = H d2 d1 Simulating an optional C-Z |0i H |0i H

More Related