1 / 24

Methodology I HD-method ( S7&8, App. 7A/B, 8A)

Methodology I HD-method ( S7&8, App. 7A/B, 8A). for testing and further evaluation of theories derive and test (general and individual) test implications (in observation terms) examples Einstein-Eddington: GRT  light bending Newell&Simon: physical symbol system hypothesis

dillian
Download Presentation

Methodology I HD-method ( S7&8, App. 7A/B, 8A)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Methodology IHD-method (S7&8, App. 7A/B, 8A) • for testing and further evaluation of theories • derive and test (general and individual) test implications (in observation terms) • examples • Einstein-Eddington: GRT light bending • Newell&Simon: physical symbol system hypothesis • a physical symbol system has the necessary and sufficient means for general intelligent action • falsification or confirmation (no verification!)

  2. Dogmatic HD-strategies: challenge (App. 7B) • auxiliary hypotheses (many types, see DN-model) • validity of logico-mathematicalargumentation • observation presuppositions • initial test conditions • decision criterion (statistical/approximative) • inductive jump (to general success)

  3. Separate HD-evaluation • HD-method applied to theory X • derive and test general test implications • per I: ito (in terms of)individual test implications, • either falsification: by individual counter example of I, and hence of X • or acceptance of I: general success of X • NB: success: prediction or explanation, minimal. derivable

  4. Negative: problems Asymmetric model: individual counterexamples Symmetric models: general counter-examples indicvidual counterexamples Positive: successes general successes general successes individual successes Evaluation report of X at t

  5. Comparative HD-evaluation • Def: Y is at t more successful than X • no extra counter-examples • previous successes are retained • more successes and/or fewer counter-examples • Asymmetric (S8.1), or symmetric (S.8.2) • then with (qualitative or quantitative) comparative matrix • CSH: Comparative Success Hypothesis: • Y remains at least as successful as X • interesting hypothesis, • even if Y is already falsified!

  6. Rule of Success (Instrumentalist):IRS • IRS: If CSH has been “sufficiently” tested, choose, for the time being, the more successful theory • Application of IRS: empirical progress • CLAIM: IRS, and hence the HD-method, are functional for truth approximation

  7. General Methodological Principles • 1) Falsifiability (= confirmability/testability) • 2) Evaluation (=> evaluation report) • specifically: aim at likely falsification (= potential strong confirmation!) • 3) Improvement Principle (IP) (=> empirical progress) • not:elimination-principle (EP) (Popper?) • e.g. by idealization and concretization • 4) For remaining choices: simplicity, and other aesthetic criteria

  8. Dogmatic behaviorKuhn/Lakatos App. 8A • Improvement principle (IP) • Programmatic improvement principle (PIP) • aim at a better theory with the same hard core • if necessary, adapt the hard core • if no other option, look for another program • (P)IP functional for empirical progress and truth approxination • Types of dogmatic behavior: • scientific: if with PIP • pseudoscientific: if without PIP

  9. Hiërarchie van epistemologische posities Q0: onafhankelijke natuurwerkelijkheid? Nee  ontologisch idealisme  Ja: ontologisch realisme Q1: ware claims mogelijk? Nee  epistemologisch relativisme - ervarings-scepticisme  Ja: epistemologisch realisme - inductief scepticisme Q2: voorbij waarneembaar? Nee  observational realisme - instrumentalisme  Ja: wetenschappelijk realisme - constructief empiricisme Q3: voorbij referentie? Nee  referentieel realisme  entiteiten realisme  Ja: theorie-realisme Q4: ideale conceptualisering? Nee  constructief realisme  Ja: essentialistisch realisme

  10. Vier perspectieven voor theorie-realisme

  11. Soorten actuele en nomische waarheidsbenadering • PM: het beste afleidingsinstrument: instrumentalist • observationeel: constructive empiricist • referentieel: referentieel realist • theoretisch: constructief realist • essentialistisch: essentialistisch realist PM: “de waarheid”: de sterkste ware theorie over een gegeven domein in een gegeven vocabulair

  12. Conclusies ICRvooruitblik: How to approach the truth? • goede redenen voor overstap:instrumentalist 1 constructief empiricist 2 referentieel realist 3 constructief realist, maar niet voor 4 essentialist • 1,2  3 tbv lange termijn dynamiek: theorieën als waar accepteren  levert nieuwe observatietermen • instrumentalistische methode efficiënter voor waarheids-benadering dan falsificationistische methode • hiërarchie van heuristische posities, geen dogma • everything goes sometimes • reculer pour mieux sauter

  13. A probabilistic perspective on the hypothetical method Theo A.F. Kuipers, Groningen, www.philos.rug.nl/personae/kuipers • concept explication by I&C I.e. idealization and concretization (to appear A) • tested by the approximative reduction principle: AR-test, i.e. extreme special case

  14. From d- to p-consequences • Idealization: H E: E deductive (d-)consequence of H • Concretization: p(E/H) > p(E): E probabilistic (p-)consequence of H 1 > p(E/H) > p(E): E pp(proper p)-consequence of H • AR-test: let HE, then p(E/H)=1 > p(E) hence, assuming p(E)<1, a d-consequence is a p-consequence • To be studied: PCn(A) =def {B/p(B/A)>p(B)}

  15. Comparisons Not: probable consequence/validity, e.g. • J.L.Cohen: The provable and the probable • mainly about Baconian vs Pascalian probabilities • F. Jackson: assertability of a conditional (AB) iff p(B/A) high Perhaps: probabilistic conditional/validity, but not so e.g. • R. Bradley and N. Schwartz: “B follows probably from A” = • iff most models of A are models of B • E. Adams: “probability conditional” = p(B/A), and “p-validity” = uncertainty conclusion  sum uncertainty premises To be checked: D. Lewis, R.C. Jeffrey, F.P. Ramsey, R. Stalnaker

  16. From the HD- to the HP-method of testing Definition E is a d-/p-test implication of H iff E is an ‘observational’ d-/p-consequence of H • Idealization: Hypothetico-Deductive (HD-)Method aims at d-confirmation or falsification of d-test implications • Concretization: Hypothetico-Probabilistic (HP-)Method aims at p-confirmation or p-disconfirmation of p-test implications

  17. From d- to p-confirmation: Conclusions Analysis ICR Part I (SiS Ch. 7.1.2) • There is a coherent landscape of confirmation notions, allowing different languages of (degrees of) confirmation • Idealization: Deductive confirmation • Concretization: Probabilistic confirmation • basic definition: p(E/H)>p(E) • instead of standard: p(H/E)>p(H) • ‘p’ may be Popperian: no inductive means Carnapian: only inductive likelihoods Bayesian: only inductive priors Hintikkian: both • which one, no fact of the matter

  18. Challenge • A coherent I&C explication of deductive and probabilistic methods of testing and of separate and comparative evaluation, taking counterexamples into account • testing sep. eval. comp. eval. deductive ICR ICR ICR    probabilistic ICR/SiS to be done to be done

  19. HD- and HP-testing and -evaluation

  20. D-/P-Evaluation Matrix (Bx: deductive boxes, ICR/SiS)

  21. DN-/PN-predictions and -explanations: “H predicts/explains E, assuming C (=A&B&C)” • DN-idealization H&C E • PN-concretization p(E/H&C) > p(E/C) • AR-test: OK • assuming C, E2 more risky prediction of H than E1, iff p(E2/C) < p(E1/C) andp(E2/H&C)  p(E1/H&C) • assuming C, H2 explains E better than H1, iff p(E/H2&C) > p(E/H1&C)

  22. Comparative Evaluation and Truth Approximation • ICR-story in terms of positive and negative HD-results: • Definition “more successfulness” • Comparative Success Hypothesis • Instrumentalist Rule of Success (IRS) • Inference to the Best Theory (IBT, to appear B) • Inductive Jump to the Best Theory (to appear B) • Extendable to HP-results!?

  23. Conclusion • There is a HP-method as a straightforward concretization of the HD-method: AR-tests: • all transitions from p- to d-notions: p (E/H)=1/0 • from separate evaluation to testing: not yet falsified • from comparative to separate evaluation: one tautology • Depending on p: Popperian, Carnapian, Bayesian, Hintikkian • Enabling: testing; separate and comparative evaluation; explanation and prediction • To be further studied • similar perspectives on truth approximation • PCn(A) =def {B/p(B/A)>p(B)}

  24. References Kuipers, T. (ICR/2000), From Instrumentalism to Constructive Realism, Synthese Library 287, Kluwer AP, Dordrecht, Kuipers, T. (SiS/2001), Structures in Science, Synthese Library 301, Kluwer AP, Dordrecht, To appear A: ” Empirical and conceptual idealization and concretization. The case of truth approximation", to appear in Liber Amicorum for Leszek Nowak, homepage To appear B: ” Inference to the best theory, rather than inference to the best explanation”, to appear in Proceedings ESF-workshop Induction and Deduction in the Sciences, Vienna, 2002, homepage.

More Related