1 / 24

SEM BASIC MODELS

SEM BASIC MODELS. Regression Model. V3 = * V1 + *V2+ D. V1. D. *. V3. *. *. V2. Regression with error-in-variables. Ex. 3.1.2 of Fuller (1987) Data from a sample of Iowa farm operators Y = ln (farm size) X1 = ln ( # years experience ) X2 = ln (# years education )

dillon
Download Presentation

SEM BASIC MODELS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. SEM BASIC MODELS

  2. Regression Model V3 = *V1 + *V2+ D V1 D * V3 * * V2

  3. Regression with error-in-variables Ex. 3.1.2 of Fuller (1987) Data from a sample of Iowa farm operators Y = ln (farm size) X1 = ln ( # years experience ) X2 = ln (# years education ) (to protect confidentiality, random error was added to each variable)

  4. Regression with error-in-variables * V1 D3 E1 F1 * F3 * V2 * E2 * F2 * V3 E3 F3 = *F1 + *F2 + D3 V1 = F1 + E1 V2 = F2 + E2 V3 = F3 + E3 E1 = .0997; E2 = .2013; E3 = .1808; Coeficientes de fiabilidad son .80, .83 y .89 respectivamente

  5. N=176 Regression equation

  6. Regression with error-in-variables /TITLE MODELO DE REGRESION CON ERROR EN LAS VARIABLES /SPECIFICATIONS CAS=176; VAR=3; ME=ML; /LABELS V1=TAMANO; V2=EXPER; V3=EDUCAC; F1=TAM; F2=EXP; F3=EDU; /EQUATIONS V1 = F1+ E1; V2 = F2+ E2; V3 = F3+ E3; F1=*F2+*F3+D1; /VARIANCES F2 TO F3 = *; D1=*; E1 = 0.0997; E2 = 0.2013; E3 = 0.1808; /COVARIANCES F2,F3 = *; /MATRIX .9148 .2129 1.006 .0714 -.449 1.039 /PRINT DIG=4; /END

  7. D3 * V1 V3 * * D4 V2 * V4 Path analysis model V3 = *V1 + *V2 + D3 V4 = *V1 + *V2 + D4 *

  8. Simultaneous equations Education development, Sewell, Haller & Ohlendorf (1970) sample of n = 3500 where: Y1 = academic performance (AP), Y2 = significant influences of others(SO), Y3 = educational aspirations (EA), X1 = mental ability (MA), X2 = socioeconomic status (SES).

  9. u3 e2 y2 u2 Y1 X1 Y3 X2 Y2 Model: df = chi2=7.14. Without introducing measurement error on Y2, chi2 is 186.39 with3 df, so …

  10. Path analysis model //TITLE modified Sewell et al (1970) model /SPECIFICATIONS CAS=3500; VAR=5; ME=ML; MA=COR; ANAL=COR; /LABELS V1=HABMENT; V2=ESTATSOC; V3=EXACAD; V4=INFOTROS; V5=ASPEDUC; /EQUATIONS V3 =*V1 +D1; F1 =*V1+*V2+*V3 +D2; V5 = *V3+*F1 +D3; V4=F1+E1; /VARIANCES E1=*; V1 TO V2 = *; D1 TO D3 = *; /COVARIANCES V1 TO V2 = *; /MATRIX 1.000 .288 1.000 .589 .194 1.000 .438 .359 .473 1.000 .418 .380 .459 .611 1.000 /PRINT DIG=3; /END

  11. Mimic model Joreskog & Goldberger, JASA (1979) y =social participation X1 = Income X2 = Occupation X3 = Education Y1= Church attendance Y2 = Membership Y3 = Frieds Seen X1 Y1 u1 b1 l1 b2 l2 X2 y Y2 u2 l3 b3 X3 Y3 u3 e

  12. V1 V4 E2 * * * * V2 F1 V5 E5 * * V3 V6 E6 D1 Mimic model F1 = *V1 + *V2 + *V3 + D V4 = *F1 + E4 V5 = *F1 + E5 V6 = *F1 + E6 * * *

  13. ML estimates: 6 overidentifying restrictions. The corresponding chi2 is 12.36 with “P-VALUE” 0.052.

  14. Mimic model /TITLE Modelo MIMIC /SPECIFICATIONS VARIABLES=6; CASES=530; METHODS=ML; MATRIX=CORRELATION; /LABELS V1 = Income; V2 = Occupa; V3 = Educat; V4 = Church; V5 = Afiliat ; V6 = Friends; /EQUATIONS V4 = 1F1 + E4; V5 = *F1 + E5; V6 = *F1 + E6; F1 = *V1 + *V2 + *V3 + D1; /VARIANCES V1 TO V3 = *; E4 TO E6 = *; D1 = *; /COVARIANCES V2 , V1 = *; V3 , V1 = *; V3 , V2 = *; /MATRIX 1.000 0.304 1.000 0.305 0.344 1.000 0.100 0.156 0.158 1.000 0.284 0.192 0.324 0.360 1.000 0.176 0.136 0.226 0.210 0.265 1.000 /LMTEST /WTEST /PRINT

  15. Panel data xta = gt + bx(t-1)a + la + mta Xta = xta + vta t = 1,2, ..., T a = 1,2,..., N Anderson (1986) xta budget of household a at time t la individual (unobserved) characteristic of household a

  16. Panel data E2 E1 E3 E4 E5 ET V1 V2 V3 V4 V5 VT …. 1 1 1 1 1 1 * * * * * …. * F1 F2 F3 F4 F5 FT D2 D3 D4 D5 DT 1 1 1 1 1 1 F0 In a stationary process, Var(F1)=[Var(D) + Var F0 ]/(1-b)

  17. Factor analysis (Spearman, 1904) Variables CLASSIC = V1 FRENCH = V2 ENGLISH = V3 MATH = V4 DISCRIM = V5 MUSIC = V6 Correlation matrix 1 .83 1 .78 .67 1 .70 .64 .64 1 .66 .65 .54 .45 1 .63 .57 .51 .51 .40 1 cases = 23;

  18. Single-Factor Model * * * * * * V1 V2 V3 V4 V5 V6 * * * * * * F1

  19. EQS code for a factor model RESIDUAL COVARIANCE MATRIX (S-SIGMA) : CLASSIC FRENCH ENGLISH MATH DISCRIM V 1 V 2 V 3 V 4 V 5 CLASSIC V 1 0.000 FRENCH V 2 -0.001 0.000 ENGLISH V 3 0.005 -0.029 0.000 MATH V 4 -0.006 0.003 0.046 0.000 DISCRIM V 5 -0.001 0.054 -0.015 -0.056 0.000 MUSIC V 6 0.003 0.005 -0.017 0.030 -0.049 MUSIC V 6 MUSIC V 6 0.000 CHI-SQUARE = 1.663 BASED ON 9 DEGREES OF FREEDOM PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS 0.99575 THE NORMAL THEORY RLS CHI-SQUARE FOR THIS ML SOLUTION IS 1.648 .

  20. Single-Factor Model Loadings’ estimates , s.e. and z-test statistics CLASSIC =V1 = .960*F1 +1.000 E1 .160 6.019 FRENCH =V2 = .866*F1 +1.000 E2 .171 5.049 ENGLISH =V3 = .807*F1 +1.000 E3 .178 4.529 MATH =V4 = .736*F1 +1.000 E4 .186 3.964 DISCRIM =V5 = .688*F1 +1.000 E5 .190 3.621 MUSIC =V6 = .653*F1 +1.000 E6 .193 3.382 Unique factors E1 -CLASSIC .078*I .064 I 1.224 I I E2 -FRENCH .251*I .093 I 2.695 I I E3 -ENGLISH .349*I .118 I 2.958 I I E4 - MATH .459*I .148 I 3.100 I I E5 -DISCRIM .527*I .167 I 3.155 I I E6 -MUSIC .574*I .180 I 3.184 I I

  21. Single-Factor Model STANDARDIZED SOLUTION: CLASSIC =V1 = .960*F1 + .279 E1 FRENCH =V2 = .866*F1 + .501 E2 ENGLISH =V3 = .807*F1 + .591 E3 MATH =V4 = .736*F1 + .677 E4 DISCRIM =V5 = .688*F1 + .726 E5 MUSIC =V6 = .653*F1 + .758 E6

  22. Factor analysis Vi = l Fi + Ei Var Fi = 1 Var Ei = f F1 F2 V1 V2 V3 V4 E1 E2 E3 E4

  23. Lisrel example Analysis of Reader Reliability in Essay Scoring Analysis of Reader Reliability in Essay Scoring Votaw's Data Congeneric model estimated by ML DA NI=4 NO=126 LA ORIGPRT1 WRITCOPY CARBCOPY ORIGPRT2 CM 25.0704 12.4363 28.2021 11.7257 9.2281 22.7390 20.7510 11.9732 12.0692 21.8707 MO NX=4 NK=1 LX=FR PH=ST !EQ TD(1) - TD(4) !EQ LX(1) - LX(4)LK Esayabil PD OU

More Related