1 / 11

De geschiedenis van de deling

Nationale Wiskunde Dagen 2014 Natascha Ralki & Sien Gielen. De geschiedenis van de deling. Egyptische deling. Gerbert. Ontbinden in factoren. De staart-deling. 2000 v. Chr. 825 980. 1400 1600 1800 2000. De galei-methode. De k orte deling. De lange deling.

dinah
Download Presentation

De geschiedenis van de deling

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Nationale Wiskunde Dagen 2014 Natascha Ralki & Sien Gielen De geschiedenis van de deling

  2. Egyptische deling Gerbert Ontbinden in factoren De staart-deling 2000 v. Chr. 825 980 1400 1600 1800 2000 De galei-methode De korte deling De lange deling

  3. Verklaring Egyptische deling

  4. 19 : 8 3=2+1 3 =8 : 2 : 2 +8 : 2 : 2 : 2 = 8 x + 8 x 19 = 8 x 2 + 8 x + 8 x 19 = 8 x 2 + 3 19 = 8 x ( 2 x + )

  5. Verklaring Galeimethode

  6. 8 685 : 16 8 685 = (5  1 000)+ 3 685 • = (5  1 000) + (5  600)+ 685 • = 5  (1000 + 600)+ 685 • = 5  (1600) + 685 • = 5  (1600) + [(4  100) + 285] • = 5  (1600) + [(4  100)+ (4  60) + 45] • = 5  (1600) + [4  (100 + 60) + 45] • = 5  (1600) + (4  160) + 45 • = 5  (1600) + (4  160) + [(2 10) + 25] • = 5  (1600) + (4  160) + [(2  10) + (2  6) + 13] • = 5  (1600) + (4  160) + [2  (10 + 6) + 13] • = 5  (1600) + (4  160) + (2  16) + 13]

  7. Verklaring Gerbert

  8. = (10 – 2)  90 + 180 + 4 = (10 – 2) 90 + (10 – 2)  18 + 2  18 + 4 = (10 – 2)  90 + (10 – 2)  18 + 40 = (10 – 2)  90 + (10 – 2)  18 + (10 – 2)  4 + 2  4 = (10 – 2)  90 + (10 – 2)  18 + (10 – 2)  4 + 8 = (10 – 2) (90 + 18 +4) + 8 = 8  (90 + 18 +4 + 1) = 8  113 904 = 900 + 4 = 10 x 90 = (10 – 2) x 90 + 2 x 90 + 4 904 : 8

  9. Doorschuiven

  10. 1  2 2  3 3  1 4  5 5  6 6  4 Doorschuiven: eerste keer

  11. 1  3 2  1 3  2 4  6 5  4 6  5 Doorschuiven: tweede keer

More Related