1 / 52

all numbers have a pattern

all numbers have a pattern. all patterns contain a message. all messages reveal a destiny. (number 23 movies). TIF 4001. aljabar linier. aljabar linier. Any question?. Lecturer. BUDI DARMA SETIAWAN , S.Kom., M.CS s.budidarma @ub.ac.id WIBISONO SUKMO WARDHONO , ST, MT

dinos
Download Presentation

all numbers have a pattern

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. all numbers have a pattern

  2. all patterns contain a message

  3. all messages reveal a destiny (number23 movies)

  4. TIF4001 aljabarlinier aljabarlinier

  5. Any question?

  6. Lecturer BUDI DARMA SETIAWAN, S.Kom., M.CS s.budidarma@ub.ac.id WIBISONO SUKMO WARDHONO, ST, MT wibiwardhono@ub.ac.id WIBI BISON

  7. Visit ... wibiwardhono.lecture. .ac.id

  8. refference’s keyword(s) Aljabar Linier & Matriks Matematika Teknik Aljabar Linier Elementer Linear Algebra Aljabar Linier Aljabar Linear

  9. refference’s keyword(s) by subject Aljabar Linier & Matriks Transformasi Linier Sistem Persamaan Linier Matriks Ruang-ruang vektor Determinan Vektor Ruang 2 & Ruang 3 Nilai & faktor Eigen

  10. 1 First sight ... Pendahuluan Aljabar Linier

  11. 2 Matriks Invers

  12. 3 Pangkat Matriks, Matriks Elementer & Metode mencari A-1

  13. 4 kuis1 MATRIKS

  14. 5 Sistem Persamaan Linier Operasi Baris Elementer Eliminasi Gauss & Gauss-Jordan

  15. 6 - SPL (Lanjutan) - Determinan

  16. 7 Determinan (Lanjutan)

  17. 8 Ujian Tengah Semester

  18. 9 Vektor (Refreshing) Operasi Vektor di R2 & R3

  19. 10 Ruang-ruang Vektor

  20. 11 Ruang-ruang Vektor (lanjutan)

  21. 12 kuis2 VEKTOR

  22. 13 Transformasi Linier

  23. 14 Nilai & Vektor Eigen

  24. 15 kuis3 TransLin & Eigen

  25. 16 Ujian Akhir Semester

  26. PENILAIAN N1= Kehadiran, Tugas & Keaktifan N2= Nilai Q1 N3= Nilai UTS N4= Nilai Q2 N5= Nilai Q3 NA= average(N1:N5)

  27. START Read: NA False NA > 80 ? True Read: UAS False NA > UAS ? True NA = 0,5 NA + 0,5 UAS NA = 0,8 NA + 0,2 UAS Nilai = “A” Nilai  NA Write: Nilai END

  28. Syarat Mutlak

  29. Matriks Komputasi Array

  30. Matriks Sekumpulan elemen berupa angka/ simbol yang tersusun dalam baris dan kolom p q r s t u v w x

  31. Matriks p q r s t u v w x Aij jumlah baris jumlah kolom

  32. Matriks p q r s t u v w x a11 a12 a13 a21a22a23 a31a32a33 A A33 Ordo Matriks: 3 x 3

  33. Matriks Berdasarkan ordonya

  34. Matriks Persegi Ordo Matriks: n x n 15 4 8 3 12 7 9 10 11 1 16 6 14 5 2 13 1 3 2 6 9 5 8 4 7 1 3 4 7

  35. Matriks Kolom Ordo Matriks: n x 1 1 6 8

  36. Matriks Baris Ordo Matriks: 1 x n 1 6 8

  37. Matriks Tegak Ordo Matriks: m x n Untuk m > n 8 1 6 5 2 7

  38. Matriks Datar Ordo Matriks: m x n Untuk m < n 2 8 1 6 5 7

  39. Matriks Berdasarkan elemennya

  40. Matriks Diagonal Matriks Persegi dengan semua elemen bernilai 0 Kecuali unsur-unsur pada diagonal utama -1 0 0 0 4 0 0 0 7

  41. Matriks Segitiga Matriks Persegi dengan semua elemen bernilai 0 pada unsur-unsur di bawah/ di atasdiagonal utama -1 5 4 9 0 2 3 -6 0 0 -7 1 0 0 0 8 7 0 0 0 -2 3 0 0 -4 -1 6 0 9 -5 1 8

  42. Matriks Skalar Matriks Persegi Dengan semua elemen bernilai samapada diagonal utama 6 0 0 0 6 0 0 0 6

  43. Matriks Simetri Matriks Persegi dengan elemen amn = anm 3 5 -2 5 1 4 -2 4 -6 a12 = a21 a22 = a22 a13 = a31 a32 = a23 a33 = a33 a11 = a11

  44. TRANSPOSE Matriks

  45. Matriks Transpose matriks AT = Aji Aij 2 6 8 5 1 7 2 8 1 6 5 7

  46. Matriks Setangkup ? 3 5 -2 5 1 4 -2 4 -6 A=AT

  47. OPERASI Matriks

  48. Penjumlahan & Pengurangan Matriks Ordo matriks harus sama a11 a12 a13 a21a22a23 a31a32a33 b11 b12 b13 b21b22b23 b31b32b33 A= B= A+B : aij+bij A-B : aij-bij

  49. int i,j,m=3,n=3,a[m][n],b[m][n],c[m][n]; main() { for(i=0;i<m;i++) for(j=0;j<n;j++) { cin>>a[i][j]; cin>>b[i][j]; c[i][j]=a[i][j]+b[i][j]; } }

  50. Perkalian skalar dengan matriks ka11ka12ka13 ka21ka22ka23 ka31ka32ka33 A’=kA=

More Related