1 / 34

Radio Pulsar Emission and Crustal Field Evolution

Radio Pulsar Emission and Crustal Field Evolution. Ulrich R.M.E. Geppert DLR Bremen University of Zielona Gora. Collaboration :. J. Gil & G. Melikidze radio pulsar physics. J. Pons & D. Viganò EMHD, numerics. P artially S creened G ap M odel for Radio Pulsars.

dionne
Download Presentation

Radio Pulsar Emission and Crustal Field Evolution

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Radio Pulsar Emission andCrustal Field Evolution Ulrich R.M.E. Geppert DLR Bremen University of Zielona Gora NS2014 Firenze

  2. Collaboration: J. Gil & G. Melikidze radiopulsarphysics J. Pons & D. Viganò EMHD, numerics NS2014 Firenze

  3. PartiallyScreenedGap Model for Radio Pulsars (seetalkof A. Szary, NS2014) Conditionsforsufficientelectronpositron pair creation: 1. surfacefieldG 2. curvatureradiusofkm NS2014 Firenze

  4. 1. surfacefieldG Medin & Lai 2007: forgapcreation G (observed) NS2014 Firenze

  5. 2. curvatureradiusofkm partofparticleenergytransferredtoradiation gapheightcm, dipolarfieldcm cm for NS2014 Firenze

  6. Can crustalfieldevolutionprovide such structures? complexmagneto-thermal processes codethatcanmodelthem: Viganò, Pons, Miralles 2012 successfullyappliedby Viganò etal. 2013 (seetalkof J. Pons) NS2014 Firenze

  7. Field evolution in thecrust: microphysics, EoSand on thermal history NS2014 Firenze

  8. mainproblem: „initial“ conditions strengthandstructureofand at the „beginning“ NS2014 Firenze

  9. fieldstructure at thebeginning: - MHD equilibrium? immediately after PNS phase? - Hall equilibrium? - onsetofcrystallization? fewhours, dayslater Ohmicdiffusion/dissipation NS2014 Firenze

  10. MHD equilibrium: toroidalcomponentofhastovanish onlywithinclosed (within thestar) fieldlinesof NS2014 Firenze

  11. MHD equilibrium in normal matter, const. density Lyutikov, 2010 confinedto a small equatorialbeltof closedpoloidalfieldlines I: poloidalcurrent F: toroidalcurrent qualitativelysimilar form forbarotropicand non-barotropicEoS (Fujisawa, Yoshida,Eriguchi, 2012), forstratifiedand SCII (Lander, Andersson, Glampedakis, 2012) NS2014 Firenze

  12. MHD equilibriumstable? Yes, twistedtorusfield(Braithwaite&Nordlund, 2004) after hours … days: crystallizationstarts at crust-core interface there: electron MHD Hall equilibrium? NS2014 Firenze

  13. Hall equilibrium: quitesimilarto MHD equilibrium Gourgouliatosetal. 2013: Can itbeestablished at all? ContinuousOhmicdecay! Drives differencebetween MHD andeMHDevolution? NS2014 Firenze

  14. Gourgouliatosetal. 2013: evenif MHD equilibrium at electronfraction NS2014 Firenze

  15. quadrupolartoroidalcomponent higherorderpoloidalandtoroidalmultipoles Hall equilibrium will bereachedonlywhen hasbeendissipatedmuch NS2014 Firenze

  16. observationalclues on internalfieldstructure: NS2014 Firenze

  17. Shabaltas & Lai 2012: lightcurveofyoung NS in Kes79 relativelyweakdipolefield best fit: strong crustaltoroidalfield NS2014 Firenze

  18. Rea etal. 2010: SGR 0418+5729 „…,a large fractionoftheradiopulsarpopulationmayhave magnetar like internalfieldsnot reflected in their normal dipolarcomponent.“ Geppert etal. 2006: pulsed thermal X-rayemission strong crustaltoroidalfields NS2014 Firenze

  19. initial fieldconfiguration: axial symmetry: vanishing in the polar region NS2014 Firenze

  20. promising model: , i.e. standardcooling at G, G impurityparameter: g g NS2014 Firenze

  21. NS2014 Firenze

  22. yr yr yr yr NS2014 Firenze

  23. decays in the South surface NS2014 Firenze

  24. However: confinded in closedlinessimilarstructures - maximumin core - at crustcoreinterface strong but noproblem NS2014 Firenze

  25. NS2014 Firenze

  26. NS2014 Firenze

  27. Conclusions: - magneticspotiscreated in yr - meridional spotscale, verycloseto North pole if crustalconfinedfield, at iffieldpenetratescore - spotismaintainedoverfewyr - reflectsthetheinfluenceofthefield on theheatflow NS2014 Firenze

  28. electric conductivity in deepcrustallayer hastobe not too large important: isnecessary, whileforsmaller large impuritycoefficient proof: same model but NS2014 Firenze

  29. NS2014 Firenze

  30. Not in contradictionto Pons, Viganò, Rea 2013: large necessarytoexplainslowspin of X-raypulsars!! NS2014 Firenze

  31. fieldstrength at thebeginning: if G : not sufficentfor creationof a magneticspotwith ||G ifG: too strong local Joule heating, too rapid fielddecay GG NS2014 Firenze

  32. fieldstructure at thebeginning: bothanddipolar canbeeitherconfinedtothecrustor threadthecorewithconfindedwithin closedpoloidalfieldlines NS2014 Firenze

  33. Requiredmagnetic „hotspots“ are created on therighttimescaleandwith sufficientstrengths, quiteindependently on the initial fieldstructurefor initial fieldstrengththataretypicalfor youngneutronstars! NS2014 Firenze

  34. Next (and urgent) task: 3D non-axialsymmetricfields!!! NS2014 Firenze

More Related