270 likes | 332 Views
Can we detect tracking dark energy dynamics?. Bruce Bassett, Mike Brownstone, Antonio Cardoso, Marina Côrtes, Yabebal Fantaye, Renee Hlozek, Jacques Kotze, Patrice Okouma. arXiv:0709.0526. Big Bang Nucleosynthesis.
E N D
Can we detect tracking dark energy dynamics? Bruce Bassett, Mike Brownstone, Antonio Cardoso, Marina Côrtes, Yabebal Fantaye, Renee Hlozek, Jacques Kotze, Patrice Okouma arXiv:0709.0526
Big Bang Nucleosynthesis • Hence we can constrain the amount of dark energy at BBN. Bean et al. (2001) find at 2s • CMB constraints (Doran et al. 2005, 2006) from the power spectrum give arXiv:0709.0526
Tracking Models DE Dominated Matter dominated Radiation dominated Slow transition Perfect scaling Where the field stops tracking and starts to dominate arXiv:0709.0526
Linking BBN to late times • Tracking Dark Energy models link the constraints on DE at z = 1010 to today via the energy density of DE arXiv:0709.0526
Hubble Parameter arXiv:0709.0526 as zt →∞, r → 0
Specific late-time models • Two broad classes of tracking models considered – polynomial w(z) and scalar field φ in a double exponential potential • Polynomial: • Linear case (w2=0) → zt≈ 6.2 arXiv:0709.0526
Quadratic Case • If w2≠0 then w(zt)=0 → w(0) = -1 zt > 4.02 to ensure w(z) ≥-1 w< -0.8 for all z< 1 arXiv:0709.0526
Dark Energy Density arXiv:0709.0526
H(z) - quadratic 2.7% arXiv:0709.0526
Δμ(z) - quadratic DETF Stage III errors between 0.02 and 0.3 mag DETF Stage IV (SNAP-like) Errors ~ 0.01mag Deviation →0.03 mag as z →∞ arXiv:0709.0526
Double Exponential Potential • Not perfect scaling: the BBN constraint is now arXiv:0709.0526
Double Exponential Potential • Two cases: • m >0 → smooth w(z) at low redshift • m < 0 → oscillating w(z) arXiv:0709.0526
Double Exponential Potential arXiv:0709.0526
Double Exponential Potential arXiv:0709.0526
Double Exponential Potential Field φ oscillates around minimum arXiv:0709.0526
Double Exponential Potential arXiv:0709.0526
Double Exponential Potential arXiv:0709.0526
Double Exponential Potential Late-time Acceleration with smooth w(z) Early scaling arXiv:0709.0526
Derived w(z) from Double Exponential V(φ) All models have w<-0.98 for z<0.2 arXiv:0709.0526
Energy Density - DEP 3/4e arXiv:0709.0526
H(z) - DEP Forcing w(0) < -0.9 means deviation < 2.5% arXiv:0709.0526
Δμ(z) - DEP All oscillating models have |Δμ| <0.032 Solid line → w(0) = -0.9 model arXiv:0709.0526
Failure of standard parametrisations • Chevalier-Polarski-Linder parametrisation is most widely used • Forms the basis for the DETF Figure of Merit • If φ is to be a minimally coupled canonical scalar field → w(z) ≥ -1 for all z • CPL cannot match both BBN and have w(z) ≥ -1 • Logarithmic w(z) works, but requires zt > 12.4 arXiv:0709.0526
CPL Energy Density Phantom w needed to match the BBN constraints arXiv:0709.0526
Conclusions • Detection of tracking dynamics will be limited until Stage IV experiments • The standard CPL parametrisation cannot match BBN when describing fields with w(z) ≥ -1 arXiv:0709.0526
Conditions on models • So if w large today it must stay flat: • In all our models • For the linear parametrisation we find arXiv:0709.0526
w(0) – w’(0) connection • Empirical relation for other models? • To be considered in more detail in future work arXiv:0709.0526