1 / 25

Today’s Agenda

Today’s Agenda. Review Homework #1 [not posted] Probability  Application to Normal Curve Inferential Statistics Sampling. There are 2 outcomes that are red. THERE ARE 10 POSSIBLE OUTCOMES. Probability Basics.

diza
Download Presentation

Today’s Agenda

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Today’s Agenda • Review Homework #1 [not posted] • Probability  Application to Normal Curve • Inferential Statistics • Sampling

  2. There are 2 outcomes that are red THERE ARE 10 POSSIBLE OUTCOMES Probability Basics • What is the probability of picking a red marble out of a bowl with 2 red and 8 green? p(red) = 2 divided by 10 p(red) = .20

  3. Frequencies and Probability • The probability of picking a color relates to the frequency of each color in the bowl • 8 green marbles, 2 red marbles, 10 total • p(Green) = .8 p(Red) = .2

  4. Frequencies & Probability • What is the probability of randomly selecting an individual who is extremely liberal from this sample? p(extremely liberal) = 32 = .024 (or 2.4%) 1,319

  5. PROBABILITY & THE NORMAL DISTRIBUTION • We can use the normal curve to estimate the probability of randomly selecting a case between 2 scores • Probability distribution: • Theoretical distribution of all events in a population of events, with the relative frequency of each event

  6. PROBABILITY & THE NORMAL DISTRIBUTION • The probability of a particular outcome is the proportion of times that outcome would occur in a long run of repeated observations. • 68% of cases fall within +/- 1 standard deviation of the mean in the normal curve • The odds (probability) over the long run of obtaining an outcome within a standard deviation of the mean is 68%

  7. Probability & the Normal Distribution • Suppose the mean score on a test is 80, with a standard deviation of 7. If we randomly sample one score from the population, what is the probability that it will be as high or higher than 89? • Z for 89 = 89-80/7 = 9/7 or 1.29 • Area in tail for z of 1.29 = 0.0985 • P(X > 89) = .0985 or 9.85% • ALL WE ARE DOING IS THINKING ABOUT “AREA UNDER CURVE” A BIT DIFFERENTLY (SAME MATH)

  8. Probability & the Normal Distribution • Bottom line: • Normal distribution can also be thought of as probability distribution • Probabilities always range from 0 – 1 • 0 = never happens • 1 = always happens • In between = happens some percent of the time • This is where our interest lies

  9. Inferential Statistics (intro) • Inferential statistics are used to generalize from a sample to a population • We seek knowledge about a whole class of similar individuals, objects or events (called a POPULATION) • We observe some of these (called a SAMPLE) • We extend (generalize) our findings to the entire class

  10. WHY SAMPLE? • Why sample? • It’s often not possible to collect info. on all individuals you wish to study • Even if possible, it might not be feasible (e.g., because of time, $, size of group)

  11. WHY USE PROBABILITY SAMPLING? • Representative sample • One that, in the aggregate, closely approximates the population from which it is drawn

  12. PROBABILITY SAMPLING • Samples selected in accord with probability theory, typically involving some random selection mechanism • If everyone in the population has an equal chance of being selected, it is likely that those who are selected will be representative of the whole group • EPSEM – Equal Probability of SElection Method

  13. PARAMETER & STATISTIC • Population • the total membership of a defined class of people, objects, or events • Parameter • the summary description of a given variable in a population • Statistic • the summary description of a variable in a sample (used to estimate a population parameter)

  14. INFERENTIAL STATISTICS • Samples are only estimates of the population • Sample statistics will be slightly off from the true values of its population’s parameters • Sampling error: • The difference between a sample statistic and a population parameter

  15. EXAMPLE OF HOW SAMPLE STATISTICS VARY FROM A POPULATION PARAMETER x=7 x=0 x=3 x=1 x=5 x=8 x=5 x=3 x=8 x=7 x=4 x=6 X=4.0 X=5.5 μ = 4.5 (N=50) x=1 x=7 x=3 x=4 x=5 x=6 CHILDREN’S AGE IN YEARS X=4.3 x=2 x=8 x=4 x=5 x=9 x=4 x=5 x=9 x=3 x=0 x=6 x=5 X=5.3 X=4.7

  16. By Contrast:Nonprobability Sampling • Nonprobability sampling may be more appropriate and practical than probability sampling: • When it is not feasible to include many cases in the sample (e.g., because of cost) • In the early stages of investigating a problem (i.e., when conducting an exploratory study) • It is the only viable means of case selection: • If the population itself contains few cases • If an adequate sampling frame doesn’t exist

  17. Nonprobability Sampling: 2 Types • CONVENIENCE SAMPLING • When the researcher simply selects a requisite number of cases that are conveniently available • SNOWBALL SAMPLING • Researcher asks interviewed subjects to suggest additional people for interviewing

  18. Probability vs. Nonprobability Sampling:Research Situations • For the following research situations, decide whether a probability or nonprobability sample would be more appropriate: • You plan to conduct research delving into the motivations of serial killers. • You want to estimate the level of support among adult Duluthians for an increase in city taxes to fund more snow plows. • You want to learn the prevalence of alcoholism among the homeless in Duluth.

  19. (Back to Probability Sampling…)The “Catch-22” of Inferential Stats: • When we collect a sample, we know nothing about the population’s distribution of scores • We can calculate the mean (X) & standard deviation (s) of our sample, but  and  are unknown • The shape of the population distribution (normal?) is also unknown • Exceptions: IQ, height

  20. PROBABILITY SAMPLING • 2 Advantages of probability sampling: • Probability samples are typically more representative than other types of samples • Allow us to apply probability theory • This permits us to estimate the accuracy or representativeness of the sample

  21. SAMPLING DISTRIBUTION • Sampling Distribution • From repeated random sampling, a mathematical description of all possible sampling event outcomes (and the probability of each one) • Permits us to make the link between sample and population… • & answer the question: “What is the probability that sample statistic is due to chance?” • Based on probability theory

  22. EXAMPLE OF HOW SAMPLE STATISTICS VARY FROM A POPULATION PARAMETER x=7 x=0 x=3 x=1 x=5 x=8 x=5 x=3 x=8 x=7 x=4 x=6 X=4.0 X=5.5 μ = 4.5 (N=50) x=1 x=7 x=3 x=4 x=5 x=6 CHILDREN’S AGE IN YEARS X=4.3 x=2 x=8 x=4 x=5 x=9 x=4 x=5 x=9 x=3 x=0 x=6 x=5 X=5.3 X=4.7

  23. What would happen…(Probability Theory) • If we kept repeating the samples from the previous slide millions of times? • What would be our most common sample mean? • The population mean • What would the distribution shape be? • Normal • This is the idea of a sampling distribution • Sampling distribution of means

  24. Relationship between Sample, Sampling Distribution & Population • Empirical (exists in reality) • but unknown • Nonempirical (theoretical or hypothetical) • Laws of probability allow us • to describe its characteristics • (shape, central tendency, • dispersion) • Empirical & known (e.g., • distribution shape, mean, standard deviation)

  25. THE TERMINOLOGY OF INFERENTIAL STATS • Population • the universe of students at the local college • Sample • 200 students (a subset of the student body) • Parameter • 25% of students (p=.25) reported being Catholic; unknown, but inferred from sample statistic • Statistic • Empirical & known: proportion of sample that is Catholic is 50/200 = p=.25 • Random Sampling (a.k.a. “Probability”) • Ensures EPSEM & allows for use of sampling distribution to estimate pop. parameter (infer from sample to pop.) • Representative • EPSEM gives best chance that the sample statistic will accurately estimate the pop. parameter

More Related