260 likes | 283 Views
This study analyzes brain cancer mortality rates in the United States from 1986-1995, focusing on children and adults. The research explores potential risk factors and identifies spatial clustering patterns using statistical tests.
E N D
Brain Cancer Mortalityin the United States Joint work with: Zixing Fang, UCLA David Gregorio, Univ Connecticut
U.S. Brain Cancer Mortality1986-1995 deaths rate* (95% CI) Children (age <20): 5,062 0.75 (0.66-0.83) Adults (age 20+): 106,710 6.0 (5.8-6.2) Adult Women: 48,650 4.9 (4.7-5.0) Adult Men: 58,060 7.2 (7.0-7.5) * annual deaths / 100,000
Brain Cancer • Known risk factors: • High dose ionizing radiation • Selected congenital and genetic disorders • Explains only a small percent of cases. • Potential risk factors: • N-nitroso compounds?, phenols?, pesticides?, polycyclic aromatic hydrocarbons?, organic solvents?
Adjustments All subsequent analyses where adjusted for: • Age • Gender • Ethnicity (African-American, White, Other)
Cuzick-Edward’s Test: Children k p-value 200 0.04 500 0.13
Tango’s Excess Events Test:Children l p-value 1000 0.005 2000 0.06 5000 0.21 10000 0.29
Children: Seven Most Likely Clusters Cluster Obs Exp RR p= 1. Carolinas 86 51 1.7 0.24 2. California 16 4.9 3.3 0.74 3. Michigan 318 250 1.3 0.74 4. S Carolina 24 10 2.5 0.79 5. Kentucky-Tenn 127 88 1.4 0.79 6. Wisconsin 10 2.4 4.1 0.98 7. Nebraska 12 3.6 3.3 0.99
Conclusions: Children Some evidence of global spatial clustering, but rather weak. No statistically significant clusters detected. Any part of the pattern seen on the original map may be due to chance.
Cuzick-Edward’s k-NN: All Adults k p-value 4000 0.0001 10000 0.0001
Tango’s EET: All Adults l p-value 1000 0.0001 2000 0.0001 5000 0.0001 10000 0.0001
Cuzick-Edward’s: Women k p-value 1500 0.0001 3000 0.0001
Tango’s EET: Women l p-value 1000 0.0001 2000 0.0001 5000 0.0001 10000 0.0001
Women: Most Likely Clusters Cluster Obs Exp RR p= 1. Arkansas et al. 2830 2328 1.22 0.0001 2. Carolinas 1783 1518 1.17 0.0001 3. Oklahoma et al. 1709 1496 1.14 0.003 4. Minnesota et al. 2616 2369 1.10 0.01 10. N.J. / N.Y. 1809 2300 0.79 0.0001 11. S Texas 127 214 0.59 0.0001 12. New Mexico et al. 849 1049 0.81 0.0001
Cuzick-Edward’s: Men k p-value 2000 0.0001 4000 0.0001
Tango’s EET: Men l p-value 1000 0.0001 2000 0.0001 5000 0.0001 10000 0.0001
Men: Most Likely Clusters Cluster Obs Exp RR p= 1. Kentucky et al. 3295 2860 1.15 0.0001 2. Carolinas 1925 1658 1.16 0.0001 3. Arkansas et al. 1143 964 1.19 0.001 4. Washington et al. 1664 1455 1.14 0.003 5. Michigan 1251 1074 1.17 0.005 11. N.J. / N.Y. 2084 2615 0.80 0.0001 12. S Texas 157 262 0.60 0.0001 13. New Mexico et al. 1418 1680 0.84 0.0001 14. Upstate N.Y. et al. 1642 1895 0.87 0.0001
Conclusions: Adults Strong evidence of global spatial clustering. It is possible to pinpoint specific areas with higher and lower rates that are statistically significant, and unlikely to be due to chance. The exact borders of detected clusters are uncertain. Similar patterns for men and women.
Conclusion: General Tests for spatial randomness are very useful additions to cancer maps, in order to determine if the observed patterns are likely due to chance or not. Different tests provide complementary information.