1 / 18

Adaptive Skin Color Classification

Our approach develops an adaptive skin color classifier to support face model fitting, mimic recognition, and gaze estimation. By addressing skin color variations due to image conditions, illumination, and camera settings, our method improves detection accuracy for colored persons. Results show significant enhancements in facial parts detection and overall precision.

dlaura
Download Presentation

Adaptive Skin Color Classification

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Adaptive Skin Color Classification

  2. challengeour approach results outlook Motivation Skin color detection supports… • face model fitting • mimic recognition • person identification • gaze estimation • fatigue detection (e.g. vehicle) • hand tracking • gesture recognition • action recognition • supervising work Technische Universität München Matthias Wimmer

  3. challengeour approach results outlook Challenge • Skin color depends on image conditions: • illumination: light source, light color, shadow, shading,… • camera: type, settings,… • visible person: ethnic group, tan,… • Skin color occupies a large area within color space Technische Universität München Matthias Wimmer

  4. challengeour approach results outlook Observations • Skin color varies greatly between images. • Skin color varies slightly within an image. Basic idea • learn image specific skin color characteristics • parameterize a skin color classifier accordingly skin color of image1 skin color of image2 Technische Universität München Matthias Wimmer

  5. challengeour approach results outlook Our approach Offline step: • learn the skin color mask • specific for any face detector Online steps: • Step 1: detect the image specific skin color model • using the face detector • using the skin color mask • Step 2: adapt a skin color classifier • Step 3: calculate the skin color image Technische Universität München Matthias Wimmer

  6. challengeour approach results outlook Skin color model & skin color classifier • detect the face • extract the skin color pixels • skin color model: • mean values: μr, μg, μbase • standard deviations: σr, σg, σbase • adaptive skin color classifier: skin := lowr ≤ r ≤ highrlowg ≤ g ≤ highg lowbase ≤ base ≤ highbase • learn the bounds lowr := μr – 2σrhighr := μr + 2σr . . . . . . . . . Technische Universität München Matthias Wimmer

  7. challengeour approach results outlook Results • better results for • colored persons • exact shape outline • detection of facial parts:eyes, lips, brows,… • correctly detected pixels: • non-adaptive approach: 90.4% 74.8% 40.2% • adaptive approach: 97.5% 87.5% 97.0% • improvement: 7.9% 17.0% 141.3% Technische Universität München Matthias Wimmer

  8. challengeour approach results outlook Conclusion • Challenge: much variation within skin color • illumination, camera, visible person • skin color occupies a large area within color space • We propose a way to reduce those variations • exploit an image specific skin color model • adapt a skin color classifier to that skin color model • We proved our approach • using a simple but real-time capable skin color classifier • comparison: non-adaptive ↔ adaptive Technische Universität München Matthias Wimmer

  9. challengeour approach results outlook Ongoing research • Learn skin color mask for other face detectors • Specialize more powerful skin color classifiers • Recognize other feature images/color images • lip color image • tooth color image • eye color image • hair color image • eye brow color image example: lip color detection Technische Universität München Matthias Wimmer

  10. Thank you ! Technische Universität München Matthias Wimmer

  11. Overview • Motivation / Challenge • Our approach • extracting skin color pixels • adapt skin color classifier • Results • Conclusion • Outlook Technische Universität München Matthias Wimmer

  12. challengeour approach results outlook Challenge (2): non-skin color pixels • Skin color pixels have to be separated from non-skin color pixels. • Areas of skin color and non-skin color overlap. • Color can not make a distinctive separation. Technische Universität München Matthias Wimmer

  13. Basic idea • learn image specific skin color characteristics • parameterize classifier accordingly with those characteristics Technische Universität München Matthias Wimmer

  14. challengeour approach results outlook Offline: Learn the skin color mask 1. 2. 3. • face image database with labeled skin color pixels • skin color mask: array with 24 x 24 cells Computational steps: • detect the face in every image • every cell is assigned the relative number of labeled skin color pixels at its position • apply threshold Technische Universität München Matthias Wimmer

  15. challengeour approach results outlook Step 1: Detect the image specific skin color model • detect the face • extract the skin color pixels • normalized RGB color space: base = R + G + B r = R / base g = G / base • skin color model: • mean values: μr, μg, μbase • standard deviations: σr, σg, σbase Technische Universität München Matthias Wimmer

  16. challengeour approach results outlook Step 2: Adapt a skin color classifier • non-adaptive skin color classifier: skin := 0.35 ≤ r ≤ 0.5 0.2 ≤ g ≤ 0.7 200 ≤ base ≤ 740 • adaptive skin color classifier: skin := lowr ≤ r ≤ highrlowg ≤ g ≤ highglowbase ≤ base ≤ highbase • learn the bounds via the skin color model • mean value and standard deviationlowr := μr – 2σrhighr := μr + 2σr . . . . . . . . . • linear function:lowr := aμr + bμg + cμbase + dσr + eσg + fσbase + g . . . Technische Universität München Matthias Wimmer

  17. Adaptive skin color classifier • non adaptive skin color classifier: skin := 0.35 ≤ r ≤ 0.5  0.2 ≤ g ≤ 0.7  200 ≤ base ≤ 740 • adaptive skin color classifier: skin := lowr ≤ r ≤ highr lowg ≤ g ≤ highg lowbase ≤ base ≤ highbase • learn the bounds out of the skin color model Technische Universität München Matthias Wimmer

  18. challengeour approach results outlook Related work • Feedback of information fromhigh level vision components to low level vision components Technische Universität München Matthias Wimmer

More Related