1 / 14

Just as an introduction for SDP-partners, this is a

Just as an introduction for SDP-partners, this is a. theoretical ppt on properties of triangles in which first, 3 properties are formulated and visualised (recalling or introducing new concepts) afterwards, 2 of these properties are proved.

dmitri
Download Presentation

Just as an introduction for SDP-partners, this is a

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Just as an introduction for SDP-partners, this is a • theoretical ppt on properties of triangles • in which • first, 3 properties are formulated and visualised • (recalling or introducing new concepts) • afterwards, 2 of these properties are proved • while building up the proves interactively, • pupils draw and write on prefab-sheets which • combine multiple slides into 1 page (sheets are • included here but not translated)

  2. 7.3 Properties of triangles

  3. 1) A A middle parallel of a triangle (a line connecting the middles of two sides of the triangle) C B is // with the third side and has half of its length

  4. 2 1 2) Two medians of a triangle (lines through angle and middle of opposite side) A divide each other in 2 parts which are in the ratio of 2 to 1 C B

  5. x y h 3) A In a rectangular triangle the height onto the hypothenuse is middleproportional C B between the line segments h2 = x . y in which it divides the hypothenuse

  6. A C B Een middenparallel van een driehoek (een lijnstuk dat de ……………………………………………………………… …………………………..) is // met de derde zijde en ……………………………. • Gegeven: ABC met M het midden van [AB] en N het midden van [BC] • Te bewijzen: MN // AC en …………………... • Bewijs: • Beschouw  ABC en  MBN : • B = ………………….. • = ……… (……………..)   ABC …………………… • M = A • AB wordt door MN en AC gesneden • volgens ……………………………….. ……………………………… • …………………… |MN| = ………………     

  7. |MN| = |AC| 1) 2) A middle parallel of a triangle (a line which ………………………………………………………… is // with the third side ……………… connects the middles of two sides of the triangle) and has half of its length A Given: ABC with M the middle of [AB] and N the middle of [BC] To be proved: MN // AC and …………………... M C B N

  8. A M C B N   ABC …………. • Prove: • Consider  ABC and  MBN : • = …………………..  in common (……….) 2   MBN 1)

  9. A M C B N  ABC ………….   MBN 1)  AB is cut by MN and AC according to ……………………………….. equal corresponding angles  MN // AC

  10. A M C B N |MN| = |AC|  ABC ………….   MBN 2) = 2  = 2 

  11. In een rechthoekige driehoek is de hoogte op de schuine zijde ………….…………………………………. tussen de lijnstukken waarin ze de schuine zijde verdeelt. (zie p A.18) • Gegeven: rechthoekige  ABC met BH de hoogetlijn op [AC] • Te bewijzen:|BH|2 = |AH|.|HC| • Bewijs: • Beschouw  AHB en  BHC : • A = …………………………………... • C = …………………………………... (……….)   AHB …………………… A C B    ……………………….. of ………………………..

  12. In a rectangular triangle the heigth onto the hypothenuse is ………….………… between the line segments in which it divides the hypothenuse middleproportional Given: rectangular  ABC with BH the perpendicular onto [AC] To be proven: …………….. A H |BH|2 = |AH|.|HC| C B

  13. 1 2 (angle angle)   AHB   |BH|2 = |AH|.|HC| A Prove: Consider  AHB and  BHC : Name the angles in B: H C B    BHC

  14. … and now exercises …

More Related