200 likes | 212 Views
Explore capacitance examples like coaxial cables and spherical capacitors, understanding dielectrics, equations, configurations, and practical applications in Chapter 6. Learn about capacitance of two-wire lines and solve related homework questions.
E N D
Chapter 6 Dielectrics and Capacitance Several Capacitance Examples • As first example, consider a coaxial cable or coaxial capacitor of inner radius a, outer radius b, and length L. • The capacitance is given by: • Next, consider a spherical capacitor formed of two concentric spherical conducting shells of radius a and b, b>a.
Chapter 6 Dielectrics and Capacitance Several Capacitance Examples • If we allow the outer sphere to become infinitely large, we obtain the capacitance of an isolated spherical conductor: • A sphere about the size of a marble, with a diameter of 1 cm, will have: • Coating this sphere with a different dielectric layer, for which ε = ε1, extending from r = a to r = r1,
Chapter 6 Dielectrics and Capacitance Several Capacitance Examples • While the potential difference is: • Therefore,
Chapter 6 Dielectrics and Capacitance Several Capacitance Examples • A capacitor can be made up of several dielectrics. • Consider a parallel-plate capacitor of area S and spacing d, d << linear dimension of S. • The capacitance is ε1S/d, using a dielectric of permittivity ε1. • Now, let us replace a part of this dielectric by another of permittivity ε2, placing the boundary between the two dielectrics parallel to the plates. • Assuming a charge Q on one plate, ρS = Q/S, while DN1 = DN2, since D is only normal to the boundary. • E1 = D1/ε1 = Q/(ε1S),E2 = D2/ε2 = Q/(ε2S). • V1 = E1d1, V2 = E2d2.
Chapter 6 Dielectrics and Capacitance Several Capacitance Examples • Another configuration is when the dielectric boundary were placed normal to the two conducting plates and the dielectrics occupied areas of S1 and S2. • Assuming a charge Q on one plate, Q = ρS1S1 + ρS2S2. • ρS1 = D1 = ε1E1,ρS2 = D2 = ε2E2. • V0 = E1d = E2d.
Chapter 6 Dielectrics and Capacitance Capacitance of a Two-Wire Line • The configuration of the two-wire line consists of two parallel conducting cylinders, each of circular cross section. • We shall be able to find complete information about the electric field intensity, the potential field, the surface charge density distribution, and the capacitance. • This arrangement is an important type of transmission line.
Chapter 6 Dielectrics and Capacitance Capacitance of a Two-Wire Line • The potential field of two infinite line charges, with a positive line charge in the xz plane at x = a and a negative line at x = –a is shown below. • The potential of a single line charge with zero reference at a radius of R0 is: • The combined potential field can be written as:
Chapter 6 Dielectrics and Capacitance Capacitance of a Two-Wire Line • We choose R10 = R20, thus placing the zero reference at equal distances from each line. • Expressing R1 and R2 in terms of x and y, • To recognize the equipotential surfaces, some algebraic manipulations are necessary. • Choosing an equipotential surface V = V1, we define a dimensionless parameter K1 as:
Chapter 6 Dielectrics and Capacitance Capacitance of a Two-Wire Line • After some multiplications and algebra, we obtain: • The last equation shows that the V = V1 equipotential surface is independent of z and intersects the xz plane in a circle of radius b, • The center of the circle is x = h, y = 0, where:
Chapter 6 Dielectrics and Capacitance Capacitance of a Two-Wire Line • Let us no consider a zero-potential conducting plane located at x = 0, and a conducting cylinder of radius b and potential V0 with its axis located a distance h from the plane. • Solving the last two equations for a and K1 in terms of b and h, • The potential of the cylinder is V0, so that: • Therefore,
Chapter 6 Dielectrics and Capacitance Capacitance of a Two-Wire Line • Given h, b, and V0, we may determine a, K1, and ρL. • The capacitance between the cylinder and the plane is now available. For a length L in the z direction,
Chapter 6 Dielectrics and Capacitance Capacitance of a Two-Wire Line • Example • The black circle shows the cross section of a cylinder of 5 m radius at a potential of 100 V in free space. Its axis is 13 m away from a plane at zero potential.
Chapter 6 Dielectrics and Capacitance Capacitance of a Two-Wire Line • We may also identify the cylinder representing the 50 V equipotential surface by finding new values for K1, b, and h.
Chapter 6 Dielectrics and Capacitance Capacitance of a Two-Wire Line
Chapter 6 Dielectrics and Capacitance - - - - - - - - + + + + + + + + Capacitance of a Two-Wire Line
Chapter 6 Dielectrics and Capacitance Capacitance of a Two-Wire Line • For the case of a conductor with b << h, then:
Chapter 6 Dielectrics and Capacitance Homework 9 • D6.2 (or D5.9 of 6th Edition) • D6.5 (or D5.12) • D6.6 (or D5.13) • Deadline: 05.04.11, at 07:30 am.
Chapter 6 Dielectrics and Capacitance End of the Lecture