710 likes | 821 Views
G eneralized R ank A nnihilation F actor A nalysis. Anal Chem 58( 1986 )496. E Sanchez B R Kowalski. Bilinear data. One component Rank =1. f (Emiss.). e (Excit.). Conc. . . X 1 (Fluoresc.). =. Two components. E. Conc. F. . . X 2 (Fluoresc.). =.
E N D
GeneralizedRank Annihilation FactorAnalysis Anal Chem 58(1986)496. E Sanchez B R Kowalski
Bilinear data One component Rank =1 f (Emiss.) e (Excit.) Conc. X1 (Fluoresc.) =
Two components E Conc. F X2 (Fluoresc.) =
X2- 0.5 X1 = E Rank=2 Rank=1 Lorber, 1984 Two components X2 = Rank = 2 one component (calibration matrix) X1 = Quantification of one component. Rank = 1
Two components(sample) X2 = Rank = 2 Two components(calibration) X3 = Rank = 2 What about quantific. of more than one component?
Generalized RAFA [Anal Chem 1986, 58, 496-499. B.R. Kowalski] 1. Non-iterative [Lorber, 1984]. 2. Simultaneous detn. of analytes using Just one bilinear calibration spectrum from one mixture of standards. • Bilinear spectrum of each analyte • b. Relative conc.s
Common F and E Trilinearity Theory sample : E = X2(FT)+ -1 E FT =X2 Calibration : E FT =X1 E = X1(FT)+ -1 X1(FT)+ -1 = X2(FT)+ -1 X1Z= USVT Z -1 Z = VS-1Z* (definition)
I I X1VS-1Z*= USVT VS-1Z*-1 UTX1VS-1Z*= Z*-1 R V = V (eigenvector analysis) FT= (VS-1Z*)+ ? E =UZ* -1 -1 =
H2A HA A H2B HB B using pH-metric titration Simult. detn. of two acids in a sample
C0A ? H2A HA A sample C0B ? H2B HB A C0A =0.02 M H2A HA A calibr. C0B =0.04 M H2B HB A Data matrices
sample calibration
sample calibration
[Usm,Ssm,Vsm] = svd(Xsm') [Zstar,λ]=eig(Usm‘ * Xcl‘ * Vsm* inv(Ssm))
(CoA)cl (CoA)sm (CoB)cl (CoB)sm λ= , (CoB)cl=0.04 M => (CoB)sm=0.02 M , (CoA)cl=0.02 M => (CoA)sm=0.03 M β= 15
Conc. profiles F = pinv( Vsm * inv( Ssm ) * Zstar)
spectral profiles E = Usm * Zstar * inv(β)
Example: HPLC-DAD chromatogram for A,B, and C (as CL), for ?,?,and ? (as SM) What if: The calibration sample includes some components that are not present in unknown sample, And there be some components in unknown sample not present in the calibration sample. The General Condition
Xcl CAcl= 1 mM CBcl= 3 mM CCcl= 2 mM
Xsm ?, ?, and ?, ..
The total space, rank =4 (includes A, B, C ,and D) Xtot = Xcl + Xsm [Utot,Stot,Vtot] = svd(Xtot') [Zstar,λ]=eig(Utot‘ * Xsm‘ * Vtot* inv(Stot))
C?sm C?sm+C?cl =0.9999 0.0003 0.5000 0.3334 B A D C?sm= C?cl C 2C?sm= C?cl C?cl=0 Only in sm C?sm=0 Only in cl CBsm= 3 mM CCsm= 1 mM λ= β/ ( β+ ξ)
Conc. profiles F = pinv( Vtot * inv( Stot ) * Zstar)
spectral profiles E = Utot * Zstar
Non-bilinear RA Rank for the pure component >1 Analyte detn. ..in the presence of unaccounted spectral interference..
Xcl One compon, but Rank=… 3
Interference H2A and H2B Rank(Xsm)=5
Conc. Prof.s Spect. Prof.s
DECRA DirectExponentialCurveResolutionAlgorithm J. Chemom. 14 (2000) 213-227.
shift 162/54= 3 54/18= 3 18/6= 3 6/2= 3 Model base:an exponential decay x2 x1 x
C1 e –k t l ===e –kt +k(t+S)= e –k S C2 e –k (t+S) x1 : C1 = e –k t x2 : C2 = e –k (t+S) k = ln(l) / S Shift
Shift=7 x1 x2 1st Ord Data From 1 sample
k = ln(2.013) / 7 =0.1
sPT sQT sRT cP cQ cR X Expon. Decay 2st Ord Data From 1 sample = + +
Stacking N E 1 F 1+S λ M-S M Gives k1 and k2 X X E (MN) ((M-S) N 2) 2-way 3-way Trilinear structure X1 = + X2
A A’ B B’ C C’ … 1st order reactions Decomposition of a number of colorants to colorless products..
svd(X)= 6279.5 294.0 34.4 0.7 0.6 0.6 … Three components
λ= k = ln(λ) / shift
k1 k2 A B D No Expon. Decaying concn.