480 likes | 616 Views
July 10, 2013. Key Privacy and Anonymous Protocols. b y Paolo D’Arco and Alfredo De Santis. Privacy. In all its forms , central issue in information technology Current methods of communication and information processing give rise to many challenges
E N D
July 10, 2013 Key Privacy and AnonymousProtocols by Paolo D’Arco and Alfredo De Santis
Privacy • In allitsforms, centralissue in information technology • Currentmethodsofcommunication and information processing give rise tomanychallenges • On wired and wireless networks: monitoringactions, transactions or activities, tracingmovements, profilingusersbehaviours…
Privacy “ U.S. authoritieshaveaccesstophonecalls, e-mails and othercommunications far beyondconstitutionalbounds.” (Edward Snowden, ex-NSA contractor) June 2013 (CNN) --PresidentBarackObamarespondedtooutragebyEuropeanleadersoverrevelationsofalleged U.S. spying on thembysayingMondaythatallnations, includingthoseexpressing the strongestprotests, collect intelligence on eachother. (June 2013)
Privacy and Anonymity “Political Springs” and social networks “Thereisnow a menacewhichiscalledTwitter,” Erdogansaid. “The best examplesoflies can befoundthere. To me, social media is the worstmenaceto society.” Turkish Prime Minister (May, 2013) In some “applications” methodstoguaranteeuser privacy and anonymouscomputation/communication play a “crucial”role…
Privacy and Anonymity “Political Springs” and social networks “Are you in Egypt? Sendusyourexperiences, butplease stay safe. Cairo (CNN) – Just ...” Needtoolsenabling private and anonymouscomputation and communication
Focus ofthispaper • Key-private public key encryptionschemes. • “Which public key hasbeenusedto produce encryptionc”? • Secret setsschemes • “Who are the membersof the set? Howmany?” • Anonymous broadcast encryptionschemes • “Who are the recipientsof the sent message?”
Contributionofthispaper key privacy and robustnessimply security formalmodelfor secret set secret set and anonymous broadcast are equivalentw.r.t. non adaptiveadversary security reductionsforgeneral and concrete secret set constructions
Public Key Encryption Π = (Gen, Enc, Dec) message space M, ciphertext space C (pk, sk) <--- Gen (1k) c <--- Encpk (m) m = Decsk (c) Correctness: Pr[(pk, sk) <---Gen (1k); m <---M; c <---Encpk (m):m = Decsk (c)] = 1
Security Semantic security: a ciphertextdoesnotleakanypartial informationabout the plaintextw.r.t a pptAdv Indistinguishability: givenm0 and m1 and an encryptionc of one of them, a pptAdvin unable to tell to whichmessage the ciphertextccorresponds to The twonotions are equivalent [GM 1984]. The second can bethoughtofas a “characterization”.
Indistinguishability: Experiment Challenger C , adversary A pk Cruns(pk, sk) <---Gen (1k) Areceivespk, oracleaccessDecsk (c) poly (k) times, outputs m0 and m1 Decsk(c) c m Phase1 m0, m1 Challenge Cchoosesb <--- {0,1}, computesc* <---Encpk (mb) c* Decsk(c) c m A winsif b’ = b b’ Phase2
IndistinguishabilityExperiments Bygivingdifferentpowerto the Adversary, wegetdifferent security notions Decsk(c) No Oracle access IND-CPA Decsk(c) IND-CCA1 Oracle accessonly in Phase1 Decsk(c) Oracle access in Phase1 and Phase2 IND-CCA2
Key Privacy [Bellareet al. 2001] Givenpk0and pk1 and anencryptioncof a messagem, obtainedbyusingoneof the two public keys, chosenuniformly at random, a pptAdvin unabletotellwithwhichone the ciphertextchasbeencomputed
IK-CCA Experiment Challenger C , adversary A pk0, pk1 Cruns(pk0, sk0) <---Gen (1k), (pk1, sk1) <---Gen (1k) Areceivespk0, pk1, oracleaccessDecsk0 (c) and Decsk1 (c) poly (k) times, outputsm* Decsk0(c) Decsk1(c) c m Phase1 m* Challenge Cchoosesb <--- {0,1}, computesc* <---Encpkb (m*) c* Decsk0(c) Decsk1(c) c m A winsif b’ = b b’ Phase2
Concrete encryptionschemes • Key privacy wasintroducedasanadditionalpropertyfor a secureencryptionscheme. • Itwasshownthat • ElGamalencryptionschemeisik-cpa private • Cramer-Shoupisik-cca private • Some otherschemes (e.g., RSA basedversions) are not.
Robustness [Abdallaet al. 2010] Given a key pair (pk0, sk0) and anencryptioncof a messagemobtainedbyusingpk0, onlysk0enablesdecrypting c. There is no other key pair (pk1, sk1) such that Decsk1 (c) ≠ fail
WROB Experiment Challenger C , adversary A pk0, pk1 Cruns(pk0, sk0) <---Gen (1k), (pk1, sk1) <---Gen (1k) Areceivespk0, pk1, oracle accessDecsk0 (c) and Decsk1 (c) poly (k) times Decsk0(c) Decsk1(c) c m Outputsm* and computesc*usingpk0 If Decsk0 (c*) ≠ fail and Decsk1 (c*) ≠ fail then C outputs 1 A winsifCoutputs1
Key Privacy, Robustness and Security Question: isthereany relation amongthem?
Non malleability [Dolevet al. 1991] Roughlyspeaking, anencryptionschemeis non malleableif, given a ciphertextc= Encpk(m), itisnotfeasibleto produce a newciphertextc’, whichisanencryptionof a messagem’, somehowrelatedtom. Non malleability under ccaattack isequivalentto IND-CCA
1. Key Privacy and robustnessimply security Thm. Let Π = (eGen, Enc, Dec) be a robust public-key encryption scheme. Π is ik-cca secure only if Π is non malleable. Since non malleabilityisequivalenttoind-cca security, weget: Cor. Let Π = (eGen, Enc, Dec) be a robust public-key encryption scheme. Π is ik-cca secure only if Π is ind-cca-secure.
Proof Idea Non ik-ccaexperimentrunby a challenger C Bycontradiction. Advforik-cca Simulates the environmentfor the NM experiment, i.e., actsas the challenger Cof the NM experiment IfthereexistsanefficientAdvwhichwins the NM experiment, thenthereexistsanefficientAdvwhichwins the ik-ccaexperiment Advfor NM
Secret Set [Molva and Tsudik 1998] A representationof a set Sofusersof a givenuniverseU, satisfying UniverseofusersU • anyuserofU can checkifheismemberofS • no one can checkifanotheruserismember • no one can determine the sizeof the set S Set S
Secret societies Real and fictitious Secret societies at Yale University Prioryof Sion A secret society is a club or organizationwhoseactivities and innerfunctionings are concealedfrom the non-members…
2. Secret Set Scheme: formalmodel Σ = (Kgen, Srep, Mver) for universe of users U={u1, …, un} (pub1, sec1) … (pubn, secn) <--- Kgen (1k) SR <--- Srep(S, pub) {0,1, fail} <---Mver(SR, seci) Correctness: foreach set S and useruiinU, foreachk, Pr[(pub1, sec1) … (pubn, secn) <---Kgen (1k); SR <---Srep(S, pub): Mver(SR, seci) = mi] = 1
Membership Private No coalitionofusersRisabletocheck the membership status mi ofuseruioutside the coalitionR
MSHIP Experiment Challenger C , adversary A pub1, …, pubn Cruns(pub1, sec1) … (pubn, secn) <---Kgen (1k) Aaskskeyqueries andmembershipqueries Decsk(c) (SR, i) / i mi / seci Phase1 ui, uj Challenge Cchoosesb <--- {0,1}, S0=SU {ui}, S1=S U {uj} computesSR* <---Srep(Sb, pub) SR* Decsk(c) (SR, i) / i mi / seci A winsif b’ = b b’ Phase2
SizeHiding No coalitionofusersRisabletodetermine the sizeof the secret set
SHIDE Experiment Challenger C , adversary A pub1, …, pubn Cruns(pub1, sec1) … (pubn, secn) <---Kgen (1k) Aaskskeyqueries andmembershipqueries Decsk(c) (SR, i) / i mi / seci Phase1 Challenge S0, S1 Cchoosesb <--- {0,1}, computesSR* <---Srep(Sb, pub) SR* Decsk(c) (SR, i) / i mi / seci A winsif b’ = b b’ Phase2
AdversaryPower Decsk(c) No Oracle access Static Decsk(c) Non-adaptive Oracle accessonly in Phase1 Decsk(c) Oracle access in Phase1 and Phase2 Adaptive
Anonymous Broadcast Encryption [Barthet al. 2006, Libertet al. 2012] The Broadcast Encryption Problem [Berkowitz 1991, Fiat and Naor 1994] • A center C broadcastsa msg to a set N of receivers • A subsetPofprivilegedusersshouldbeabletodecrypt • Pchangesfromtimetotime C msg Identities of priviliged users are in the header of msg forbidden priviliged
Anonymous Broadcast Encryption Σ = (Keygen, Encrypt, Decrypt) for universe of users U={u1, …, un} (pub1, sec1) … (pubn, secn) <--- Keygen (1k) c <--- Encrypt(P, pub, m) {m, fail} <---Decrypt(seci, c) Correctness: foreach set P and useruiinP, foreachk, Pr[(pub1, sec1) … (pubn, secn) <---Kgen (1k); c <---Encrypt(P, pub, m): Decrypt(seci, c) = m] = 1
Anonymous and semanticallysecure No Advthrough a ccaattackisabletodecrypt the message or tofind out the identityofanyrecipient
A-IND-CCA Experiment Challenger C , adversary A pub1, …, pubn Cruns(pub1, sec1) … (pubn, secn) <---Keygen (1k) Aaskskeyqueries and decryptionqueries Decsk(c) (c, i) / i m/ seci Phase1 Challenge S0, S1, m0, m1 Cchoosesb <--- {0,1}, computesc* <---Encrypt(Sb, pub, mb) c* Decsk(c) (c, i) / i m/ seci A winsif b’ = b b’ Phase2
3. Equivalencebetweenprimitives Thm1. Anonymous broadcast encryptionimplies secret set Thm2. Secret set impliesanonymous broadcast encryption w.r.t.non-adaptiveadversaries
Security reductions forgeneral and concrete constructions [Revisitationof Molva and Tsudik’sconstructions]
SignatureScheme Σ=(sGen, Sign, Ver), message space M (vk, sk) <--- sGen (1k) σ <--- Signsk (m) {0,1} <--- Vervk (m, σ) Correctness: foreachk, Pr[(vk, sk) <--- sGen (1k); m <--- M; σ <--- Signsk (m):Vervk (m, σ) =1] = 1
Unforgeability under cma Challenger C , adversary A Cruns(vk, sk) <---sGen (1k) A receives vk, oracleaccesstoSignsk(m) poly (k) times, outputs m*,σ* vk Signsk(m) m σ m*,σ* (different from all m,σ) If Ver(m*,σ*)=1 then C outputs 1, else 0. A wins ifCoutputs 1
PK-basedConstruction Π=(eGen, Enc, Dec) public key scheme, Σ=(sGen, Sign, Ver) signature scheme Kgen (1k): for j=1, …, n, (pkj, skj) <---eGen(1k) pubj = pkj, secj=skj Srep(S, pubU): (vk, sk) <---sGen(1k) for j=1, …, n, cj=Encpkj(in|vk) ifuj in S, cj=Encpkj(out|vk) ifujnot in S σ=Signsk(c1| … |cn) SR=[(c1 … cn, σ)] Mver(SR, seci) m=Decski(ci) if m=in|vk and Vervk(c1| … |cn, σ)=1 then output 1 if m=out|vk and Vervk(c1| … |cn, σ)=1 then output 0 else output fail
4. Security Reduction (1/4) • Thm. Assuming • Π = (eGen, Enc, Dec) is a cca-secure public-key encryption and • Σ = (sGen, Sign, Ver) is an existentially unforgeable under chosen message attack signature scheme • the Pk-based Construction is a membership-private and size-hiding secret set scheme
Representation-lengthefficiency Π=(eGen, Enc, Dec) public key scheme Kgen (1k): for j=1, …, n, (pkj, skj) <---eGen(1k) pubj = pkj, secj=skj Srep(S, pubS): forj s.t. uj in S, cj=Encpkj(in|uj) SR=(c1… c|S|) Mver(SR, seci) for j=1, …, |S|, m=Decskj(ci) if m=in|uj , then output 1 else if j=|S| then output 0
4. Security Reduction (2/4) • Thm. Assuming Π = (eGen, Enc, Dec) is a public-key encryption • weaklyrobust • ik-cca private • theRepresentation-length-efficientPk-based Construction, is a weakmembership-private secret set scheme. non-adaptiveadversary
DH-basedBit-VectorConstruction Gciclicgroupoforderq, ggenerator Kgen (1k): for j=1, …, n,, aj <---Zq*, computegaj pubj = gaj, secj=aj Srep(S, pubU): Choose b <--- Zq* Compute gb for j=1, …, n, Kj=(gaj)b and ifuj in S, set cj=MSB(Kj), else set cj=MSB(Kj)+1 mod2 SR=(gb,c1 … cn) Mver(SR, seci) ComputeKi=(gb) ai and di =MSB(Ki) If di = ci, then output 1; else, output 0
4. Security Reduction (3/4) • Thm. Assuming • CDHproblemis hard in G • MSBis a hard-core predicate • the DH-based bit-vectorConstructionis a weakmembership-private and size-hiding secret set scheme
Hash-basedConstruction Gciclicgroupoforderq, ggenerator, Hhashfunction Kgen (1k): for j=1, …, n,, aj <---Zq*, computegaj pubj = gaj, secj=aj Srep(S, pubS): Chooseb <---Zq* Computegb for j=1, …, |S|, Kj=(gaj)b and cj=H(Kj) SR=(gb,c1…cn) Mver(SR, seci) ComputeKi=(gai)b and h=H(Ki) If h ε {c1 …cs}, then output 1; else, output 0
4. Security Reduction (4/4) • Thm. Assuming • CDHproblemis hard in G • His a randomoracle • the Hash-based Construction is a weakmembership-private secret set scheme
Conclusions • Wehave • shownthat key privacy and robustnessimply security • introduced a formalmodelfor secret set • provedthat secret set and anonymousbrodcast are equivalentw.r.t. non adaptiveadv • provided security reductionsforgeneral and concrete secret set constructions
Open Problems • anonymous broadcast and secret set: equivalentw.r.t.adaptiveadversaries? • doesexist a length-efficientmembership-private and size-hiding secret set construction? • doesexist a length-efficientmembership-private secret set construction?