100 likes | 233 Views
Efficient Maximal Privacy in Boardroom Voting and Anonymous Broadcast. Jens Groth BRICS, University of Aarhus Cryptomathic A/S. Election Privacy. V 1. V 2. V 3. Ballot box. Result. Vote1 = Result – Vote2 – Vote3. Properties.
E N D
Efficient Maximal Privacy in Boardroom Voting and Anonymous Broadcast Jens Groth BRICS, University of Aarhus Cryptomathic A/S
Election Privacy V1 V2 V3 Ballot box Result Vote1 = Result – Vote2 – Vote3
Properties • Perfect ballot secrecycoalition information = own votes and result • Self-tallyingresult reveals itself • Dispute-freenessdishonest behavior detectable
A V1 V2 V3 BBS Assumptions • Bulletin board system • Semi-synchronousadversary: phases and activations • Static corruption • Group <g> order q, decision diffie-hellman • Random oracle model,NIZK arguments
Protocol • Public keys: h1 gx1,..., hn gxn private keys: x1,..., xn • Votes: V1: (u,v) (gr1,(h2···hn)r1gv1)V2: (u,v) (ugr2,vu-x2(h3···hn)r2gv2) = (gr1+r2,(h3···hn)r1+r2gv1+v2)..Vn: (u,v) (ugrn,vu-xngvn) = (gr1+...+rn,gv1+...+Vn) • Result: v1+...+vn
Complexity • Key generation: O(1) exposverification of proofs: O(n) expos • Voting: O(log c) exposverification of proofs: O(n log c) expos Previous protocols: • Key generation: O(n) exposverification of proofs: O(n2) expos • Voting: O(log c) exposverification of proofs: O(n log c) expos c = number of candidates
Security A S s s V1 V2 V3 V1 V2 V3 cont cont (u,v) (u,v) (u,v) (u,v) (u,v) (u,v) result v2w2 v1 v3 result Partial result: v1+v3Reveal:last honest vote
Anonymous Broadcast • Public keys: h1 gx1,..., hn gxn private keys: x1,..., xn • Messages: P1: (u1,v1) (gr1,(h2···hn)r1m1)P2: (u2,v2) (gr2,(h2···hn)r2m2) shuffle (u1,v1), (u2,v2) (u1,v1) (u1,v1u1-x2) (u2,v2) (u2,v2u2-x2) ...
Anonymous Broadcast • Pn: (un,vn) (grn,hnrnmn) shuffle (u1,v1),...,(un,vn) (u1,v1) (u1,v1u1-xn) . . . (un,vn) (un,vnun-xn) • {v1,...,vn} = {m1,...,mn} Output: m1,...,mn
Complexity • Key generation: O(1) exposverification of proofs: O(n) expos • Message submission: O(n) exposverification of proofs: O(n2) expos