1 / 109

Class overview:

Class overview:. Brief review of physical optics, wave propagation, interference, diffraction, and polarization Introduction to Integrated optics and integrated electrical circuits

Download Presentation

Class overview:

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Class overview: • Brief review of physical optics, wave propagation, interference, diffraction, and polarization • Introduction to Integrated optics and integrated electrical circuits • Guide-wave optics: 2D and 3D optical waveguide, optical fiber, modedispersion, group velocity and group velocity dispersion. 4. Mode-coupling theory, Mach-zehnder interferometer, Directional coupler, taps and WDM coupler. 5. Electro-optics, index tensor, electro-optic effect in crystal, electro-optic coefficient 6. Electro-optical modulators 7. Passive and active optical waveguide devices, Fiber Optical amplifiers and semiconductor optical amplifiers, Photonic switches and all optical switches 8. Opto-electronic integrated circuits (OEIC)

  2. Complex numbers or C: amplitude : angle b C  a Real numbers do not have phases Complex numbers have phases  is the phase of the complex number

  3. Physical meaning of multiplication of two complex numbers Number: times Phase: Phase delay Why 90 i 180 0 -1 1 -i 270

  4. 90 180 0 -1 1 270 Optical wave, frequency domain Vertical polarization, k  polarization, transwave k,  x k vector, to x-direction Initial phase Horizontal polarization Phase delay by position Amplitude, I=|A|2, Optical intensity

  5. Optical wave propagation in air (free-space) k,  Time and frequency domain of optical signal Phase delay

  6. k ∆x Optical wave propagation in air (free-space) Wave front Phase is the same on the plane --- plane wave Phase distortion in atmosphere k ∆x Wave front distortion Additional phase delay,  non ideal plane wave

  7. Optical wave to different directions Phase delay Refractive index n In vacuum, c: speed of light In media, like glass,

  8. Optical wave to different directions Phase delay In media with refractive index n n Phase delay nx1, nx2, optical path

  9. Interference of two optical waves a2 Upper arm : a3 a1 50% A Aout b1 b2 Lower arm : Aout = + Phase delay between the two arms: = If phase delay is 2m, then: If phase delay is 2m +, then: = -

  10. March-Zehnder interferometer n a2 Upper arm : a3 a1 50% A Aout b3 n2 b1 b2 Lower arm : Phase delay between the two arms: = If phase delay is 2m, then: If phase delay is 2m +, then: = - Electro-optic effect, n2 changes with E -field

  11. Electro-optic modulator based on March-Zehnder interferometer a2 n a3 a1 Electro-optic effect, n2 changes with E -field 50% A Aout b3 n2 b1 b2 Phase delay between the two arms: If phase delay is 2m, then: = If phase delay is 2m +, then: = -

  12. Reflection, refraction of light reflection 1 1 n1 2 < 1 n2 > n1 n2 2 Refraction reflection 1 1 n1 2 > 1 n2 < n1 n2 2 Refraction

  13. Total internal reflection (TIR) reflection 1 1 n1 2 > 1 n2 < n1 n2 2 Refraction When 2 = 900, 1 is critical angle

  14. Total internal reflection (TIR) Total reflection When 2 = 900, 1 is critical angle 1 1 n1 n2 2 = 900 No refraction Application – optical fiber n1 Low loss, TIR n2 Flexible n1 Communication system Electrical signal Electrical signal Laser EO modulator Detector Optical fiber

  15. Reflection percentage Intensity reflection = [(n1-n2)/(n1+n2)]2 Example 1: n1 Refractive index of glass n = 1.5; Refractive index of air n = 1; n2 The reflection from glass surface is 4%; Example 2: detector is usually made from Gallium Arsenide (GaAs), n = 3.5; Intensity reflection = [(n1-n2)/(n1+n2)]2 n1 The reflection from GaAs surface is 31%; N2 = 3.5 Detector, GaAs

  16. Interference of two optical beams, applications 1, Mach-Zehnder interferometer n a2 a3 a1 Electro-optic effect, n2 changes with E -field 50% A Aout b3 n2 b1 b2

  17. M1 Beam splitter n2 d1 n1 d2 Mirror 2 Detector 2, Michelson interferometer Phase difference: M1 Beam splitter n1 d1 n2 d2 Measuring small moving or displacement Mirror 2 If the detected light changes from bright to dark, Then the distance moved is half wavelength/2 Detector Michelson interferometer measuring speed of light in ether, speed of light not depends on direction Phase difference:

  18. 3, Measuring surface flatness Accuracy: 0.1 wavelength = 0.1*500nm = 50nm n2 n2 4, Measuring refractive index of liquid or gas Gas in

  19. Wave optics Maxwell equations: Dielectric materials Maxwell equations in dielectric materials: phasor

  20. k ∆x Wave optics approach Helmholtz Equation: Free-space solutions Wave front Phase is the same on the plane --- plane wave

  21. Cladding, n2 Core, refractive index n1 Cladding, n2 Wave optics Helmholtz Equation: 2-D Optical waveguide x z y n2 <n1 d TM mode: TE mode:

  22. Normal reflection at material interface Helmholtz Equation: Er Ein n1 x n2 z Et

  23. Normal reflection at material interface Helmholtz Equation: Er Ein n1 x n2 z Et Continuous @ z=0 Continuous @ z=0 Why?

  24. Normal reflection at material interface Helmholtz Equation: Er Ein n1 x n2 Z = 0 Z = 0

  25. Normal reflection at material interface Helmholtz Equation: Er Ein n1 x n2

  26. Reflection, refraction of light Ein 1 1 y n1 Er x n2 z Et 2

  27. Reflection, refraction of light Ein 1 1 y n1 Er x n2 z Et 2 Continuous @ z=0 Continuous @ z=0 Why?

  28. Reflection, refraction of light Ein 1 1 y n1 Er x n2 z Et 2 Continuous @ z=0

  29. Reflection, refraction of light Ein 1 1 y n1 Er x n2 z Et 2 Continuous @ z=0

  30. Reflection, refraction of light Ein 1 1 y n1 Er x n2 z Et 2 r t 1 1

  31. Ein 1 1 1 1 y n1 Er x n2 2 z Et 2

  32. Ein 1 1 1 1 y n1 Er x n2 2 z Et 2 continuous

  33. Ein 1 1 1 1 y n1 Er x n2 2 z Et 2 continuous =

  34. Ein 1 1 1 1 y n1 Er x n2 2 z Et 2

  35. Ein 1 1 1 1 y n1 Er x n2 2 z Et 2

  36. Ein 1 1 1 1 y n1 Er x n2 2 z Et 2 Ein 1 1 1 Brewster’s angle n1 Er n2 Et 2 http://buphy.bu.edu/~duffy/semester2/c27_brewster.html

  37. Ein 1 1 1 1 y n1 Er x n2 2 z Et 2

  38. n1 n2 t t r rt t r t r2t r3t t r t r4t r5t Normal reflection at material interface Helmholtz Equation: Er Ein n1 x n2 Er Ein n1 x n2

  39. Equal difference series + = + =

  40. Power series … x - =

  41. n1 n2 t t r rt t r t r2t r3t t r t r4t r5t Power series When |b|<1 b can be anything, number, variable, complex number or function Optical cavity, multiple reflections

  42. Optical cavity, wavelength dependence, resonant n1 n2 t t r A0=1 r t r t L R, intensity reflection

  43. Optical cavity, wavelength dependence, resonant Example: n2 = 1.5, R=0.04, L = 0.05mm, =0.55µm R, intensity reflection Intensity Wavelength (um) Wavelength (um)

  44. Optical cavity, wavelength dependence, resonant Resonant condition Destructively Interference Constructively Interference Resonant condition, m = 1, 2, 3, … m=1, half- cavity m=2,  cavity

  45. Optical cavity, Free-spectral range (FSR) Resonant condition, m = 1, 2, 3, … - Example: n2 = 1.5, R=0.04, L = 1mm, =0.55µm

  46. Optical cavity, Free-spectral range (FSR) L increase, FSR decrease, FSR not dependent on R Example: n2 = 1.5, R=0.04, L = 0.05mm, =0.55µm L = 0.5mm FSR FSR

  47. Optical cavity, Reflection L = 3+2*pi*5; % um lamda = 1.555:0.00001:1.59; % n2 = [2 2.2]; n2 = n2'; T = 0.05; R = 0.95; for m = 1:2 k(:,m) = 2*pi./lamda; I(:,m) = abs(T./(1-R*exp(i*2*k(:,m)*n2(m)*L))); I(:,m) = I(:,m).^2; IR(:,m) = R*abs((1-exp(i*2*k(:,m)*n2(m)*L))./(1-R*exp(i*2*k(:,m)*n2(m)*L))).^2; end plot(lamda, I(:,1), 'b'); hold on; plot(lamda, I(:,2), '-.'); plot(lamda, IR(:,1)); plot(lamda, IR(:,2), '--'); hold off n1 n2 A0=1 r r r L

  48. Transmission and reflection relationship n1 n2 A0=1 r r r L T = 0.25 R = 0.75

  49. Loss, and photon lifetime of an resonant cavity Intensity left after two mirror reflection: r1 r1r2

  50. Quality factor Q of an resonant cavity Intensity left after two mirror reflection: r1 r1r2 Time domain Frequency domain

More Related