420 likes | 439 Views
The Petty Projection Inequality and BEYOND. Franz Schuster Vienna University of Technology. n – 1. n. Notation. S ( K ) … Surface area of K V ( K ) … Volume of K n … Volume of unit ball B. S ( K ). V ( K ). . Petty's Projection Inequality (PPI).
E N D
The Petty Projection Inequality and BEYOND Franz Schuster Vienna University of Technology
n–1 n Notation S(K) … Surface area of K V(K) … Volume of K n… Volume of unit ball B S(K) V(K) Petty's Projection Inequality (PPI) The Euclidean Isoperimetric Inequality: 1 nn n "=" only if K is a ball K Cauchy's Surface Area Formula: If K , then u 1 voln – 1(K|u) S(K) = du. n–1 K|u Sn – 1
Theorem [Petty, Proc. Conf. Convexity UO 1971]: If K , then The following functional on is SL(n) invariant – n – 1 1 n n – 1 voln – 1(K|u)–n K du nn Sn – 1 S(K) n nn V(K) n Petty's Projection Inequality (PPI) "=" only if K is an ellipsoid K Cauchy's Surface Area Formula: If K , then u 1 voln – 1(K|u) S(K) = du. n–1 K|u Sn – 1
L is a zonoidifL = K + tforsomeK , t . Support Function h(K,u) = max{u .x: xK} Polar Projection Bodies – The PPI Reformulated Definition [Minkowski, 1900]: The projectionbodyKofKisdefinedby h(K,u) = voln – 1(K|u) Zonoids in …
Theorem [Petty, 1971]: If K , then V(K)n – 1V(*K) V(B)n – 1V(*B) "=" only for ellipsoids Radial functions (K,u) = max{ 0: uK} Polar projection bodies *K:= (K)* Polar Projection Bodies – The PPI Reformulated Definition [Minkowski, 1900]: * The projection bodyK of K is defined by polar h(K,u) = voln – 1(K|u) (*K,u) = voln – 1(K|u) – 1
If K , then Petty deduced the PPI from the BPCI! The BPCI is a reformulation of the Random-Simplex Inequality by Busemann (Pacific J. Math. 1953). The Busemann-Petty Centroid Inequality – Class Reduction Definition [Dupin, 1850]: centroidbodyKofKisdefinedby The K|x.u|dx. h(K,u) = Theorem [Petty, Pacific J. Math. 1961]: Remarks: V(K) – (n + 1)V(K) V(B) – (n + 1)V(B) "=" only for centered ellipsoids
The Busemann-Petty Centroid Inequality – Class Reduction Class Reduction [Lutwak, Trans. AMS 1985]: BPCI forpolarsofzonoids PPI forall convexbodies PPI forzonoids BPCI forall starbodies Based on V1(K,L) = V–1(L,*K ), where 2 n + 1 V(K + tL)–V(K) nV1(K,L) =lim t t 0+ Harmonic Radial Addition V(K 1 t .L)–V(K) –nV–1(K,L) =lim (K1t.L,.) – 1 = (K,.) – 1 + t(L,.)– 1 t t 0+
v A A Proof of the BPCI – Campi & Gronchi, Adv. Math. 2002 Definition [Rogers & Shephard, 1958]: Let A be compact, a bounded function on A and let v Sn – 1. A shadow system along the direction v is a family of convex bodies Kt defined by Kt = conv{x + (x)vt: x A}, t [0,1].
v A Proof of the BPCI – Campi & Gronchi, Adv. Math. 2002 Definition [Rogers & Shephard, 1958]: Let A be compact, a bounded function on A and let v Sn – 1. A shadow system along the direction v is a family of convex bodies Kt defined by Kt = conv{x + (x)vt: x A}, t [0,1].
v A Proof of the BPCI – Campi & Gronchi, Adv. Math. 2002 Definition [Rogers & Shephard, 1958]: Let A be compact, a bounded function on A and let v Sn – 1. A shadow system along the direction v is a family of convex bodies Kt defined by Kt = conv{x + (x)vt: x A}, t [0,1].
A Proof of the BPCI – Campi & Gronchi, Adv. Math. 2002 Proposition [Shephard, Israel J. Math. 1964]: Let Kt be a shadow system with speed function and define Ko = conv{(x,(x)): x A} . n + 1 Then Kt is the projection of Ko onto en + 1 along en + 1 – tv. Ko
A Proof of the BPCI – Campi & Gronchi, Adv. Math. 2002 Proposition [Shephard, Israel J. Math. 1964]: Let Kt be a shadow system with speed function and define Ko = conv{(x,(x)): x A} . n + 1 Then Kt is the projection of Ko onto en + 1 along en + 1 – tv. Ko
A Proof of the BPCI – Campi & Gronchi, Adv. Math. 2002 Properties ofShadow Systems: If Kt, K1, …, Kn are shadow systems, then t t V(K1,…,Kn) isconvex in t, in particularV(Kt) isconvex t t Steiner symmetrizationis a specialvolumepreservingshadowsystem Mixed Volumes V(1K1 + … + mKm) = i1…inV(Ki1,…,Kin )
K v v A Proof of the BPCI – Campi & Gronchi, Adv. Math. 2002 Properties ofShadow Systems: If Kt, K1, …, Kn are shadow systems, then t t V(K1,…,Kn) isconvex in t, in particularV(Kt) isconvex t t Steiner symmetrizationis a specialvolumepreservingshadowsystem
SvK = K 1 2 A Proof of the BPCI – Campi & Gronchi, Adv. Math. 2002 Properties ofShadow Systems: If Kt, K1, …, Kn are shadow systems, then t t V(K1,…,Kn) isconvex in t, in particularV(Kt) isconvex t t Steiner symmetrizationis a specialvolumepreservingshadowsystem K v v
K1 1 2 A Proof of the BPCI – Campi & Gronchi, Adv. Math. 2002 Properties ofShadow Systems: If Kt, K1, …, Kn are shadow systems, then t t V(K1,…,Kn) isconvex in t, in particularV(Kt) isconvex t t Steiner symmetrizationis a specialvolumepreservingshadowsystem K SvK = K v v
implies V(K) = … V([– x1,x1],…, [– xn,xn])dx1…dxn. K K A Proof of the BPCI – Campi & Gronchi, Adv. Math. 2002 First step: K = K [– x,x]dx Kt = K [– x,x] dx t
1 1 2 2 Since V(K0) = V(K) and V(K1) = V(K) this yields 1 V((SvK)) V(K). 2 A Proof of the BPCI – Campi & Gronchi, Adv. Math. 2002 First step: Kt = K [– x,x] dx t implies V(Kt) = … V([– x1,x1]t,…, [– xn,xn]t)dx1…dxn. K K Second step: V((SvK)) = V(K) V(K0) + V(K1)
Theorem [Petty, 1971]: If K , then V(K)n – 1V(*K) V(B)n – 1V(*B) "=" only for ellipsoids PPI and BPCI Lutwak, Yang, Zhang, J.Diff.Geom.2000 & 2010 Theorem [Busemann-Petty, 1961]: and Sv K (Sv K) Sv *K *(Sv K) V(K) – (n + 1)V(K) V(B) – (n + 1)V(B) If K , then "=" only for centered ellipsoids
The TheoryofValuations: Abardia, Alesker, Bernig, Fu, Goodey, Groemer, Haberl, Hadwiger, Hug, Ludwig, Klain, McMullen, Parapatits, Reitzner, Schneider, Wannerer, Weil, … Valuations on Convex Bodies Definition: A function : is called avaluation if A map : is called a Minkowski valuation if (K L) + (K L) = (K) + (L) (K L) + (K L) = (K) + (L) whenever K L .
Valuations on Convex Bodies Definition: A map : iscalled a Minkowskivaluationif (K L) + (K L) = (K) + (L) whenever K L . Examples: Trivial examples are Id and –Id is a Minkowski valuation is a Minkowski valuation
The map : istheonly non-trivial continuousSL(n) covariantMinkowskivaluation. Classification of Minkowski Valuations Theorem [Haberl, J. EMS 2011]: A map : is a continuousandSL(n) contravariantMinkowskivaluationifandonlyif o = c for some c 0. SL(n) contravariance (AK) = A–T(K), ASL(n) Remarks: o First such characterization results of and were obtained by Ludwig (Adv. Math. 2002; Trans. AMS 2005).
n–1 n n–1 n IsoperimetricInequality: 1/p pdx S(K) V(K) The Isoperimetric and the Sobolev Inequality Sobolev Inequality: Iff Cc( ), then nn 1 ||f ||1 nn|| f || n [Federer & Fleming, Ann. Math. 1960] [Maz‘ya, Dokl. Akad. Nauk SSSR 1960] Notation f ||p= || |f(x)| 1 n
n n–1 Notation Duf:=u .f 1 – n It is stronger than the classical Sobolev inequality. Affine Zhang–Sobolev Inequality Theorem [Zhang, J. Diff. Geom. 1999]: Iff Cc( ), then ||Du f ||–n nn 1 ||f ||1 nn|| f || du n 1 2n – 1 Sn – 1 Remarks: The affine Zhang–Sobolev inequality is affine invariant and equivalent to an extended Petty projection inequality.
Lp Sobolev Inequality Notation np p*:= n – p Remarks: The proof is based on Schwarz symmetrization. Theorem [Aubin, JDG; Talenti, AMPA; 1976]: If 1 < p < n andf Cc( ), then ||f ||p cn,p|| f ||p*
f f µf= µf Schwarz Symmetrization Definition: The distributionfunctionoffCc( ) isdefinedby µf (t) = V({x : | f(x)| > t}). The Schwarz symmetralfoffisdefinedby f (x) = sup{t > 0: µf (t) > n ||x||}.
Lp Sobolev Inequality Notation np p*:= n – p The isoperimetric inequality is the geometric core of the proof for every 1 < p < n. Theorem [Aubin, JDG; Talenti, AMPA; 1976]: If 1 < p < n andf Cc( ), then ||f ||p cn,p|| f ||p* Remarks: The proof is based on Schwarz symmetrization. UsingthePolya–Szegöinequality ||f ||p ||f||p theproofisreducedto a 1-dimensional problem.
Sharp Affine Lp Sobolev Inequality 1 1 – – n n Theorem [Lutwak, Yang, Zhang, J. Diff. Geom. 2002]: If 1 < p < n undf Cc( ), then ||Du f ||–n cn,p|| f ||p* an,p du p Sn – 1 Remarks: The affine Lp Sobolev inequality is affine invariant andstronger than the classical Lp Sobolev inequality. The normalization an,p is chosen such that ||Du f||–n an, p = ||f||p . du p Sn – 1
Sharp Affine Lp Sobolev Inequality 1 1 1 – – – n n n Theorem [Lutwak, Yang, Zhang, J. Diff. Geom. 2002]: If 1 < p < n undf Cc( ), then ||Du f ||–n cn,p|| f ||p* an,p du p Sn – 1 Proof.Based on affineversionofthePólya–Szegöinequality: If 1 ≤ p < n andf Cc( ), then ||Du f||–n ||Du f||–n (*) du du . p p Sn – 1 Sn – 1 [Zhang, JDG 1999] & [LYZ, JDG 2002]. For all p 1 (*) was established by [Cianchi, LYZ, Calc. Var. PDE 2010]. Remark: For each p > 1 a new affine isoperimetric inequality is needed in the proof.
Theorem [Petty, 1971]: If K , then V(K)n – 1V(*K) V(B)n – 1V(*B) = |u.v|dS(K,v). = h(L,v)dS(K,v). = h(L,v)pdSp(K,v). "=" only for ellipsoids 1 2 Sn – 1 Sn – 1 Sn – 1 Petty's Projection Inequality Revisited Definition [LYZ, 2000]: Forp>1andK theLpprojectionbodypKisdefinedby o |u.v| dSp(K,v), p h(pK,u)p = cn, p Sn – 1 LpMinkowski Addition wheretheLpsurfaceareameasureSp(K,.) isdeterminedby Cauchy‘sProjectionFormula: If K , then h(K +pt.L,.)p = h(K,.)p+ th(L,.)p V(K +p t.L)–V(K) n h(K,u) = voln – 1(K|u) , Vp(K,L) =lim p t t 0+ where the surface area measure S(K,.) is determined by V(K + tL)–V(K) nV1(K,L) =lim t t 0+
= h(L,v)pdSp(K,v). Sn – 1 Theorem [LYZ, J. Diff. Geom. 2000]: V(K)n/p – 1V(pK) V(B)n/p – 1V(pB) * * "=" only for centered ellipsoids The Lp Petty Projection Inequality Definition [LYZ, 2000]: If K , then o Forp>1andK theLpprojectionbodypKisdefinedby o |u.v| dSp(K,v), p h(pK,u)p = cn, p Sn – 1 wheretheLpsurfaceareameasureSp(K,.) isdeterminedby Remarks: V(K +p t.L)–V(K) n The proof is based on Steiner symmetrization: Vp(K,L) =lim p t t 0+ Sv* K * (SvK). p p Via Class Reduction an Lp BPCI was deduced from the Lp PPI by LYZ (J. Diff. Geom. 2000). A direct proof of the Lp BPCI using Shadow Systems was given by Campi & Gronchi (Adv. Math. 2002).
– + c1.pP +pc2.pP Lp Minkowski Valuations Definition: We call : an Lp Minkowski valuation, if o o (K L) +p (K L) = K +p L Notation whenever K L . denotes the set of convex polytopes containing the origin. o Theorem [Parapatits, 2011+; Ludwig, TAMS 2005]: A map : is an SL(n) contravariantLpMinkowskivaluationifandonlyiffor all P , o o o P = for some c1, c2 0.
1 1 2 2 Remark: The (symmetric)Lp projection body pK is – + pK:= .pK +p.pK. Asymmetric Lp Projection Bodies Definition: Forp>1andK theasymmetricLpprojection bodypKis defined by o (u.v)dSp(K,v), p h(pK,u)p = an, p Sn – 1 where (u.v) = max{u.v, 0}.
"=" only if p = p Theorem [Haberl & S., J. Diff. Geom. 2009]: If pB = B, then V(pK) V(pK) V(pK) * * *, "=" only if p = p General Lp Petty Projection Inequalities Theorem [Haberl & S., J. Diff. Geom. 2009]: If pK is the convex body defined by – + pK = c1.pK +pc2.pK, then V(K)n/p – 1V(pK) V(B)n/p – 1V(pB) * * "=" only for ellipsoids centered at the origin
"=" only if p = p V(K)n/p – 1V(pK) V(K)n/p – 1V(pK) *, * "=" only if p = p General Lp Petty Projection Inequalities Theorem [Haberl & S., J. Diff. Geom. 2009]: If pK is the convex body defined by – + pK = c1.pK +pc2.pK, then V(B)n/p "=" only for ellipsoids centered at the origin Theorem [Haberl & S., J. Diff. Geom. 2009]: If pB = B, then V(pK) V(pK) V(pK) * * *,
Asymmetric Affine Lp Sobolev Inequality ||Du f ||–n ||Du f||–n 2 cn,p|| f ||p* + du du p p Sn – 1 Sn – 1 Notation Remarks: + Duf:= max{Duf, 0} 1 1 1 – – n n p The asymmetric affine Lp Sobolev inequality is stronger than the affine Lp Sobolev inequality of LYZ for p > 1. The affine L2 Sobolev inequality of LYZ is equivalent via an affine transformation to the classiscal L2 Sobolev inequality; the asymmetric inequality is not! Theorem [Haberl & S., J. Funct. Anal. 2009]: If 1 < p < n andf Cc( ), then
An Asymmetric Affine Polya–Szegö Inequality Remark: 1 1 – – n n The proof uses a convexification procedure which is based on the solution of the discrete data case of the Lp Minkowski problem [Chou & Wang, Adv. Math. 2006]. Theorem [Haberl, S. & Xiao, Math. Ann. 2011]: If p 1 andf Cc( ), then ||Du f||–n ||Du f||–n + + du du p p Sn – 1 Sn – 1
Sharp Affine Gagliardo-Nirenberg Inequalities – n Theorem [Del Pino & Dolbeault, JMPA 2002]: [Haberl, S. & Xiao, Math. Ann. 2011]: If 1 < p < n, p < q < p(n – 1)/(n – p) andf Cc( ), then for suitable r(p,q), (n,p,q) > 0, ||Du f||–n + du ||f ||p dn,p,q|| f ||q || f ||r – 1 p Sn – 1 Affine (Asymmetric) Log-Sobolev Inequalities Haberl, Xiao, S. (Math. Ann. '11) Remarks: Other Affine AnalyticInequalitiesinclude … These sharp Gagliardo-Nirenberg inequalities interpolate between the Lp Sobolev and the Lp logarithmic Sobolev inequalities (Del Pino & Dolbeault, J. Funct. Anal 2003). Affine Moser-Trudinger and Morrey-Sobolev Inequalities Cianchi, LYZ (Calc. Var. PDE '10) A proof using a mass-transportation approach was given by Cordero-Erausquin, Nazaret, Villani (Adv. Math. 2004)
The Orlicz-Petty Projection Inequality h(K,u)dS(K,u) Definition [LYZ, 2010]: Suppose that : [0,) is convex and (0) = 0. ForK theOrliczprojectionbodyKisdefinedby o x. u dV(K,u) ≤ 1 . h(K,x) = inf > 0: h(K,u) Sn – 1 Normalized Cone Measure 1 VK () = nV(K)
The Orlicz-Petty Projection Inequality Theorem [LYZ, Adv. Math. 2010]: V(K)– 1V(K) V(B)– 1V(B) * * "=" only for centered ellipsoids Definition [LYZ, 2010]: If K , then o Suppose that : [0,) is convex and (0) = 0. ForK theOrliczprojectionbodyKisdefinedby o x. u dV(K,u) ≤ 1 . h(K,x) = inf > 0: h(K,u) Sn – 1 Sv* K * (SvK) Remark: For (t) = |t|p ((t) = max{0,t}p) the Orlicz PPI becomes the (asymmetric) Lp PPI. However, NO CLASS REDUCTION! An Orlicz BPCI was also established by LYZ (J. Diff. Geom. 2010) and later by Paouris & Pivovarov. The proof is based on Steiner symmetrization:
Open Problem – How strong is the PPI really? Question: Suppose that MValSO(n) has degree n – 1 and B = B. Is it true that V(K)n – 1V(*K) V(K)n – 1V(*K) V(B)n ? Obstacle: Theorem [Haberl & S., 2011+]: In general Sv* K *(SvK). If n = 2 and is even, then this is true! Notation: MValSO(n):= { continuousMinkowskivaluation, whichis translation in- and SO(n) equivariant} Work in progress [Haberl & S., 2011+]: If n 3 and is „generated by a zonoid“, then this is true!