1 / 28

Weak Decay of Hypernuclei (Experimental status) Stefania Bufalino

Workshop on Strangeness in Nuclei ECT*, 4-8 October, 2010. Weak Decay of Hypernuclei (Experimental status) Stefania Bufalino INFN-Torino on behalf of the FINUDA Collaboration. Talk Outline Hypernuclear weak decay (why?) Hypernuclear decay studies in FINUDA Mesonic weak decay (MWD)

dudley
Download Presentation

Weak Decay of Hypernuclei (Experimental status) Stefania Bufalino

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Workshop on Strangeness in Nuclei ECT*, 4-8 October, 2010 Weak Decay of Hypernuclei(Experimental status)StefaniaBufalino INFN-Torinoon behalf of the FINUDA Collaboration

  2. Talk Outline • Hypernuclear weak decay (why?) • Hypernuclear decay studies in FINUDA • Mesonic weak decay (MWD) • Non-Mesonic weak decay (NMWD) • Perspectives

  3. Physics motivations & open questions • MWD - Jpassignment: new indirect spectroscopic tool -LN interaction potential -p--nucleus optical potential • NMWD - 4-baryon strangeness-changing weak interaction • - DI=1/2 from s-shell (4LH) and heavy hypernuclei - Gn/Gppuzzle (solved ? … systematics) - G2N, FSI contributions

  4. FINUDA @ DAFNE e+ + e- f (1020)  K+ + K- (127 MeV/c) K-stop + AZ  ALZ + p- Detector capabilities: Selective triggerbased on fast scintillation detectors (TOFINO, TOFONE) CleanK-vertexidentification (ISIM P.ID.+x,y,zresolution + K+ tagging) , K, p, d, … P.I.D.(OSIM&LMDsdE/dx, TOF) High momentumresolution (6‰ FWHM for - @270 MeV/c for spectroscopy) (1% FWHM for p- @270 MeV/c for decay study) (6% FWHM for - @110 MeV/c for decay study) (2% FWHM for p @400 MeV/c for decay study) (tracker resolution + He bag + thin targets) Solid angle ~ 2srad Solenoid: B=1T 2003 data taking: 190 pb-1 (2x6Li, 7Li, 3x12C, 27Al, 51V) 2006 data taking: 966 pb-1 (2x6Li, 2x7Li, 2x9Be, 13C, D2O) 10 pb-1/day

  5. p - MWD & NMWD studies in FINUDA Coincidence measurement chargedMesonicchannel chargedNon-Mesonicchannel K-stop + AZ  ALZ + p- ALZA(Z+1) +p- K-stop + AZ  ALZ+p- ALZA-2(Z-1) + p + n S-EX 260-280 MeV/c MWD 80-110 MeV/c NMWD 170-600 MeV/c - -

  6. MWD:p-shell hypernuclei • MWD Pauli forbidden (pN~100 MeV/c) • theoretical calculations with pion distorted wave predict MWD to be less suppressed for p-shell (A~10) • p feels attraction in nuclear medium due to the p-wave part of the optical potential  dispersion relation modified inside the nucleus  pion carries lower • energy for fixed momentum q: w(q) = (q2+mp2)1/2  Energy conservation increases the final nucleon chance to come out above the Fermi surface • Enhancementof MWD: • Bando et al., Progr. Theor. Phys. Suppl. 72 (1984) 109 • Osetet al., NPA 443 (1985) 704 • Extensivecalculations: • Motoba et al., Progr. Theor. Phys. Suppl. 117 (1994) 477 • Gal Nucl. Phys. A 828 (2009) 72.

  7. MWD & NMWD in FINUDA: strategy Inclusive production p-spectra K-np background corrected 11LB 12LC 12LC p NMWD kinetic energy (MeV) NMWD MWD 11LB 11LB decayp-and pspectra (Lqfdecay)/K-np background subtracted & acceptancecorrected p p-

  8. Jpassignment: 7LLi Agnello PLB 681 (2009) 139 • Correspondencewith the calculatedstrenghtfunctions • T. Motobaet al, Progr. Theor. Phys. Suppl. 117 (1994) 477. • A. Gal, Nucl. Phys. A 828 (2009) 72. • Formationofdifferentexcitedstatesof the daughternucleus • Initialhypernucleusspin • Jπ(7LLig.s.) = 1/2+ (Sasao, PLB 579 (2004) 258. 7Be: 3/2-gs & 1/2- (429keV) 3-body decays Gal NPA 828 (2009) 72 T. Motoba (Private Communication))

  9. Jpassignment: 9LBe 9B: 3/2-gs & 1/2-(2.75 MeV) FINUDA DT ~ 4 MeV FWHM @38 MeV • Correspondencewith the calculatedstrenghtfunctions • T. Motobaet al, Progr. Theor. Phys. Suppl. 117 (1994) 477. • A. Gal, Nucl. Phys. A 828 (2009) 72. • Initialhypernucleusspin • Jπ(9LBeg.s.) = 1/2+ • O.Hashimoto NPA 639 (1998) 93c. Agnello PLB 681 (2009) 139 T. Motoba (Private Communication))

  10. Jpassignment: 11LB 11C: 3/2-gs & 7/2- (~6.5 MeV) Agnello PLB 681 (2009) 139 • Correspondencewith the calculatedstrenghtfunctions • H. Bando et al, Pers. Meson Science (1992) p.571 • A. Gal, Nucl. Phys A 828 (2009) 72. • Twocontributionsof the 11C ground state5/2- and its7/2-excited state • Initialhypernucleusspin • Jπ(11ΛBg.s.) = 5/2+: experimentalconfirmation • (Sato et al., PRC 71 (2005) 025203)bydifferentobservable T. Motoba (Private Communication)

  11. Jpassignment: 15LN Agnello PLB 681 (2009) 139 15O: 1/2-gs & sd(~6 MeV) • Correspondencewith the calculatedstrenghtfunctions • T. Motobaet al, Nucl. Phys. A 489 (1988) 683. • A. Gal, Nucl. Phys. A 828 (2009) 72. • 15ΛNg.sspinnotknown. Jπ(15ΛNg.s.) = 3/2+ • D.J.Millener, A.Gal, C.B.DoverPhys. Rev. C 31 (1985) 499. • Spinorderingnotobtainedfromg-raysof16LO M.Ukaiet al. Phys. Rev.C 77 (2008) 054315. • First experimentaldeterminationof • Jπ(15ΛNg.s.) = 3/2+ fromdecay rate value (and spectrumshape) T. MotobaNPA 489 (1988) 683.

  12. Mesonicdecayratio: Gp-/ GL Gp- / GL = Gtot/ GLBRp- Gtot/GL= (0.990±0.094) + (0.018±0.010) A present data T. Motoba PTPS 117 (1994) 477 previous data fit from measured values for A=4-12 hypernuclei A.Gal NPA 828 (2009) 72 p distortion, MWD enhancement proved ! strong nuclear structure effects A

  13. NMWD:p spectra @ LNF • coincidence measurement: method • Spectrum of negative pions for events in which a proton is detected in coincidence with ap- • Asking for the proton coincidence a clear peak emerges at 272 MeV/c (ground state) 12LC Proton energy spectrum from 12LCp-induced NMWD before and after the acceptance correction Not acceptance corrected Not acceptance corrected 339 events 339 events Acceptance corrected

  14. Coincidence measurement: FINUDA method background reaction: K-npS-p S-nπ- coincidence Coincidence spectra: 12LC p- p simulation + reconstruction + selection + normalization Data normalization region NMWD p subtraction M. Agnello et al., NPA 804 (2008), 151

  15. 5LHe 7LLi 12LC • Similar shape for 5LHe, 7LLi and 12LC • Peak at ~ 80 MeV (Q/2 value), broadened by N Fermi motion, • visible even for 12LC  no strong FSI effect in low energy region • FSI & 2N contribution in the low energy region ?

  16. Comparisons with theory and KEK results Garbarino PRC 69 (2004),054603 12LC 15 MeVthreshold ! FINUDA NPA 804 (2008),151 KEK E462/E508 PLB 597 (2004), 249 FINUDA NPA 804 (2008),151 5LHe FINUDA NPA 804 (2008),151 FINUDA NPA 804 (2008),151 KEK E462/E508 PLB 597 (2004), 249 Garbarino PRC 69 (2004),054603

  17. Comparisons with theory and KEK results • Comparison between FINUDA and KEK data: normalization beyond 35 MeV (KEK data threshold) • compatibility for 5LHe, not for 12LC • Comparison between FINUDA and theory: normalization beyond 15 MeV (FINUDA data threshold) • compatibility for 5LHe, not for 12LC Strong disagreement between experiments and with theory • KEK: thick targets  strong correction FINUDA: thin targets & transparent detectors • KEK: p energy from TOF and range + dE/dx poor energy resolution above 100 MeV, distortion FINUDA: p momentum from magnetic analysis, 2% energy resolution FWHM @ 80 MeV, no distortion • Inputs of calculations

  18. NMWD p spectra p-shell hypernuclei LNF FINUDA – M.Agnello et al., PLB 685 (2010) 247 Background subtracted & acceptance corrected

  19. NMWD: G2N LNF – FINUDA M.Agnello et al., PLB 685 (2010) 247 NMWD p gaussian fit free m 12LC mfrom fit Alow Ahigh Alow: spectrum area belowm 1N + 2N + FSI W.Alberico and G.Garbarino, Phys. Rev. 369 (2002) 1. assumption Ahigh: spectrum area abovem 1N + FSI 2N(>70 MeV) ~ 5% 2Ntot G,Garbarino, A.Parreno and A.Ramos, Phys.Rev.Lett. 91 (2003) 112501. Phys.Rev. C 69 (2004) 054603. assumption G2N/GNMWD & Gn/Gp independent on A

  20. NMWD: G2N FSI & LNN contribution evaluation: systematics

  21. NMWD: G2N FSI & LNN contribution evaluation Alow = 0.5 N(Lpnp) + N(Lnpnnp) + NpFSI-low Ahigh = 0.5 N(Lpnp) + NpFSI-high assumption Alow N(Lnpnnp) Gnp G2 0.5 = ≈ Alow + Ahigh Gp N(Lpnp) Gnp : Gpp:Gnn= 0.83 : 0.12 : 0.04 E. Bauer and G.Garbarino, Nucl.Phys. A 828 (2009), 29. Gp N(Lnpnnp) + NpFSI-low N(Lpnp) + R = = N(Lnpnnp) + NpFSI-low + NpFSI-high N(Lpnp) +

  22. FSI linear on A up to A=16 systematics: all p-shell G2 [R(A) – bA] - 0.5 = 0.43 ± 0.25 weighted mean = Gp 1 – [R(A) – bA] Assumption: G2/G1andGn/Gpindipendent from A supported by exp and theory 0.5 +G2/Gp + b A R(A) = a + b A = 1 +G2/Gp G2 G2/Gp = 0.24 ± 0.10 = Bauer et al., NPA 828 (2009) 29 Bhang et al., EPJ A33 (2007) 259: ~ 0.4 12LC M. Kim et al., PRL 103 (2009) 182502: 0.29 ± 0.13 12LC J.D.Parker et al., PRC 76 (2007), 035501: ≤ 0.24 (95% CL) 4LHe GNM Gn/Gp+ 1 + G2/Gp Bhang et al., EPJ A33 (2007) 259.

  23. NMWD: G2N NMWD: n+p coincidence @ FINUDA n detection efficiency ~10% nenergyresolution ~9% at 80 MeV TOF allows n/gdiscrimination background prevailsif no correlations or selections are imposed gprompt 1/b>1.47 1/b 7MeVthreshold n+ p-bound 5LHe single nspectrashapecannotbe directlyanalyzed due to background

  24. Triple coincidenceanalysis • Analysis of (p-,n,p) coincidence • Nn(cosθ≥- 0.8, Ep< m-20 MeV): 2N + FSI and small contribution of 1N • Nn = number of n in coincidence with (p-,p) • Number of neutrons for all targets (from A=5 to A=16) • No spectra shape analysis (20 events for each target) • Background study (events from K-np absorption) • Acceptance correction • Normalization to the number of protons with energy greater than the m value of the gaussian fits • of the proton spectra from FINUDA Coll. and G. Garbarino, PLB 685 (2010) 247

  25. NMWD: G2N systematics: all p-shell Nn/Np R(A) = weighted mean G2 Nn(cos ≥- 0.8, Ep<m-20 MeV) G2/Gp = 0.36±0.07 + b A G2/Gp not dependent on A R(A) = a + b A = = 0.5 Gp A Np(Ep>mp single spectra fit) G2/GNM = 0.20±0.03 8% due to systematics N(Lnpnnp) + NFSI • directmeasurement • error lowered by a factor 3 0.5 N(Lpnp) + NFSI

  26. NMWD: G2N Triple coincidence (n+n+p) events @ FINUDA exclusive Lnpnnp7LLi4He+p+n+n decay event pp- = 276.93 MeV/c Etot = 178.3 MeV Q-value = 167 MeV p miss = 216.6 MeV/c E(n1) = 110.2 MeV E(n2) = 16.9 MeV E(p) = 51.0 MeV q (n1 n2) = 95° (n1 p) = 102° (n2 p) = 154° no n-n or p/nscattering p- First direct experimental evidence of 2N-induced NMWD !!

  27. Perspectives • MWD spectra, Jp • NMWD: spectra Gn/Gppuzzle systematics, G2N and FSI contribution J-PARC

  28. THANK YOU!

More Related