1 / 10

Study of Light  - Hypernuclei by Spectroscopy of Two Body Weak Decay Pions

Study of Light  - Hypernuclei by Spectroscopy of Two Body Weak Decay Pions. This previous PR12-10-001 is now proposed as a part of combined experiments that can run at same time to maximize physics outcome. Fragmentation of Hypernuclei and Mesonic Decay inside Nucleus

gautam
Download Presentation

Study of Light  - Hypernuclei by Spectroscopy of Two Body Weak Decay Pions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Study of Light -Hypernuclei by Spectroscopy of Two Body Weak Decay Pions This previous PR12-10-001 is now proposed as a part of combined experiments that can run at same time to maximize physics outcome Fragmentation of Hypernuclei and Mesonic Decay inside Nucleus Free:  p + - 2-B: AZ  A(Z + 1) + - • Liguang Tang • Department of Physics, Hampton University • Jefferson National Laboratory (JLAB) JLabPAC40, June 18, 2013

  2. Future Project: Super Hypernuclear Physics Experiment at JLab Enge () Unified collaboration from the previous Hall A and C collaborations HRS (e’) Septum Combine the features of previous Hall A and C experiments, create an optimized future program w/ the CEBAF CW beam HKS (K) HES () Septum HRS – HKS: (e, e’K+) experiments for mass spectroscopy HKS – Enge or HKS – HES: New decay -spectroscopy experiment

  3. Decay Pion Spectroscopy to Study -Hypernuclei Direct Production e’ Example: K+ 12C e * Ground state doublet of 12B B and  p  12B  E.M. 12Bg.s. Hypernuclear States: s (or p) coupled to low lying core nucleus 2- ~150 keV 1- 0.0 -  12C Weak mesonictwo body decay

  4. Decay Pion Spectroscopy for Light and Exotic -Hypernuclei Fragmentation Process Example: e’ K+ Access to variety of light hypernuclei, some of which cannot be produced or measured precisely by other means 12C e * Fragmentation (<10-16s) p s 12B* 4H  4Hg.s. Highly Excited Hypernuclear States: s coupled to High-Lying core nucleus, i.e. particle hole at s orbit   -  Weak mesonictwo body decay (~10-10s)   4He

  5. Study of Light Hypernuclei by Pionic Decay at JlabIllustration on the Main Features Comparison of Spectroscopic and Background - Production SPECTROSCOPY Light Hypernuclei to Be Investigated e e p * - K+ p  A1Z1 stop (b) Additions from 9Li and its continuum (Phase II: 9Be target) 6 3/2+ AZ 1/2+ Jp=? VS 1- A2Z2 7Li A(Z-1) A1(Z1+1) 8He 9Li 8Li 5 (Z-1) = Z1+Z2; A=A1+A2 6Li 1/2+ 7H 3B background 1-? 5/2+ 3/2+ 2- 4 BACKGROUND e Previously measured e Ex Ex Ex 0 0 0 1 1 1 * 3 Mirror pairs K+ Ex 0 2 - p(n) ,(-) N 2 AZ (A-1)Z’ 8Be 8B 9Li 8H 7He 6He 9B 8He 3H 6Li 10Be 10Li 10B 12B 9He 7Li 9Be 5H 4H 6H 8Li 7H 11Be 11B 1 A 2 6 7 11 12 8 1 5 3 4 9 10

  6. Illustration of Decay Pion Spectroscopy Additions from 12B and its continuum (Phase III: 12C target) (c) 1- 12B 9Be 10Be 8Be 9B 11B 10Li 9He 11Be 8H Jp=? 10B 5/2+ 3B background 8B (b) Additions from 9Li and its continuum (Phase II: 9Be target) 3/2+ 1/2+ 1- 7Li 8He 9Li 8Li 6Li 1/2+ 7H 3B background 1-? 5/2+ 3/2+ 2- Ex Ex Ex (a) 0 0 0 1 1 1 2-B decay from 7He and its continuum (Phase I: 7Li target) Ex 0 2 1-? 0+ 1/2+ 3H 6He 1/2+ 6H 4H 7He 3B background 3/2+ 5H 5/2+ Ex PMax PMin Ex 2 0 0 2 90.0 100.0 110.0 120.0 130.0 140.0 - Momentum (MeV/c)

  7. Physics Goal of Decay Pion Spectroscopy • Precise measurement of ground state B (20keV) for a series of light hypernuclei with high resolution (130keV), spin-parity determination of g.s., charge symmetry breaking (CSB) from mirror pairs • Neutron rich light hypernuclei (- coupling) and neutron drip line limit (6H and 8H) • Formation of quasi free continuum and fragmentation mechanism Provide precise input for theoretical description of -N interaction. Since B and excitation are the only sources of experimental information, study wide range of hypernuclei is needed.

  8. Preliminary Results from MAMI-C KAOS – SPEC-C 2011 Run Partial 4H 2A beam KID affected by huge rate of e+ at 0 We are convinced at least on 4H observation 2012 Run Partial 20A beam • Added 10cm Pb curtain • Luminosity increased • KID was still a problem • K+ singles increased just a little

  9. Advantages of Jlab Experiment • Higher production rate (~9 times) • Excellent PID for both K+ and - • Less background (accidental or real) • Full coverage of the interested - momentum range • Can take data together with the (e, e’K+) experiment

  10. Summary • High intensity CW beam at JLAB and the characters of electro-production make possible for high precision hypernuclear programs, among which the decay pion program is unique. • The decay pion spectroscopy program is able to provide precise and fundamental information needed to understand the YN and Y-Nucleus interactions. • We are convinced from the MAMI-C test runs that the technique works.

More Related