540 likes | 838 Views
High Energy Astrophysics. § Radiative Processes. Kunihito IOKA (KEK) 井岡 邦仁. Radiative Processes. ISM Wind SN. Acceleration of Relativistic Jet G >>1. External Shock. Internal Shock. g -sphere t ~1. GRB Prompt AGN Blazar. Synchrotron Inverse Compton Bremss , e ± , …
E N D
High Energy Astrophysics § Radiative Processes Kunihito IOKA (KEK) 井岡 邦仁
Radiative Processes ISM Wind SN Acceleration of Relativistic Jet G>>1 External Shock Internal Shock g-sphere t~1 GRB Prompt AGN Blazar • Synchrotron • Inverse Compton • Bremss, e±, … • Hadron GRB Afterglow AGN Hotspot Microquasar PWN, SNR
Synchrotron Sources GRB afterglow Galama 98; Panaitescu & Kumar 00; Yost+ 03; Price+ 03; De Pasquale+ 10; many others
Synchrotron Sources AGN Blazar & Hotspot Fossati+ 97, 98; Kubo+ 98; Donato+ 01; Kino & Takahara 04, Stawarz+ 07; many others
Synchrotron Sources Pulsar Wind Nebula Aharonian+ 98; Meyer+ 10; Tanaka & Takahara10, 11; many others
Synchrotron Sources Supernova Remnant Giordano+ 11, Ohira+ 11; Abdo+ 10; many others
Synchrotron Characteristic Frequency Eq. of motion unobservable Period
Power & Spectrum Power Spectrum Volume/Time Energy density B sT Thompson Cross Section
Electron Distribution Number per unit ge (p=2: Equal E per log bin)
Lorentz Boost Blueshift Lab time t Com. t’=t/G Obs. tobs=t/G2 E/tobs=GE’/(t’/G) ∝ gm0 Blueshift Next we need G, Ne, B, gm
GRB Afterglow • G (Bulk Lorentz factor) • Adiabatic, n=const, spherical: • Ne (Electron number) • B (Magnetic field) • Shock jump condition • A fraction of energy ⇒ B Given: T, E, n, dL, ee, eB
GRB Afterglow • gm(Minimum Lorentz factor) • Shock jump condition • A fraction of energy⇒ Electron Given: T, E, n, dL, ee, eB
GRB Afterglow Evolution ~Observations
Jet Break • Adiabatic, n=const, jet Harrison+ 99 Achromatic Break Break time ⇒ Opening angle
Cooling Electrons lose energy by synchrotron Injection rate of e Second derivation
Fast Cooling ⇔ Slow cooling in previous case Electrons lose energy by synchrotron (stationary) Second derivation
Self-absorption Black body Surface area
Cooling & Self-absorption n ~GcT (Fn,max, na, nm, nc) ⇒ (E, n, ee, eB)
Synchrotron Shock Model Sari, Piran & Narayan 98 (Fn,max, na, nm, nc) ⇒ (E, n, ee, eB)
Zhang & Meszaros 03
Min. Energy Requirement Synchrotron observables Total Energy useful for limited observations
Reverse Shock Emission ISM Ejecta G Contact Discontinuity Reverse Shock Forward Shock Radius p, e 4 3 2 1 Radius G2>>1, if G34~1 ⇒ RS emission is soft (Density is high at RS ⇒ Low temperature) while e2=e3 ⇒ Total energy is similar
Optical Flash GRB990123 9等 Zhang+ 03 Provide information on ejecta ⇒ G0, B0 Fox+ 03 GRB021211 Sari & Piran99 But somehow rare
Electron Distribution • Blazar/Hotspot • p~1.4-1.8 (<2) • ⇒ Need gmax or gbr • Pulsar Wind Nebula • p~1-1.6 (<2) • ⇒ Need gmax or gbr to determine Etot to determine Etot p~2-3 p~2-3 p~1-2 p~1-2 ~106 ~104-105 ~103-104 ~109 ⇒ Pulsar Wind G~106
Synchrotron Model for GRB Prompt? Internal Shock ⇒ 1. Electron 2. Magnetic Field ⇒ Synchrotron c/sw/ observed Yonetoku relation? But DG usually destroy correlations
Amati/Yonetoku Relation Ep~600keV L531/2 Large DG/G usually destroys a correlation Amati 02 Yonetoku+KI 03 ~Typical g Energy
Synchrotron Death line n-1/2 Superposition of syn-spectrum Fn Forbidden n1/3 n w/ cooling (fast)
Inverse Compton Blumenthal & Gold 70 Comoving Frame ~ge2n ge Photon ~gen n ~gen Electron Thompson scattering change E little Obviously nIC<gemec2 (Energy conservation)
Cross Section n s [cm2] Klein-Nishina Formula/Suppression In e-moving frame,
IC Power Power Ratio to synchrotron Volume/Time Energy density e e B sT Thompson Cross Section Syncrotron IC
IC+Syn Cooling Electrons lose energy by IC & Synchrotron Injection rate of e Second derivation
SSC (SynchrotronSelf-Compton) nFn Syn-emitting electrons upscattersyn-photons Syn IC n fraction of Ue that is radiated IC-to-Syn ratio Ratio x ⇒ Unique UB & Ue
SSC Spectrum Coincide Copy ×gm2 Copy ×gc2
SSC Maximum Frequency Copy ×gm2 Copy ×gc2
Klein-Nishina Suppression E.g., if ⇒ Softer by n-1 Copy ×gm2 Copy ×gc2
External Compton Assume isotropic diffuse radiation In jet-comoving, ⇒ Enhance IC Bulk Compton by cold electron Sikora+ 94
Nonthermal from Thermal • Electronsw/ temperature kT (>mec2) • Photon energy amplification per scattering • After k scattering • Probability of k scatterings is ~tk (<1) • Emergent spectrum is ~kT Unsaturated Compton; Also nonrelativisitc case
Thermalization Consider photons w/ energy E (<<mec2) in electron bath w/ temperature T (<<mec2) How long does it take for thermalizationE→kT? Energy shift per scattering ⇒ Need many scatterings Even if t>1, non-thermal spec. survives E+DE E kT
e± Signatures Lithwick & Sari 01 Murase & KI 08 Aoi+ 10 Gmec2 Target g energy Not exp. but power-law by finite-/multi-zone & time-dependence effects Optical depth ⇒ Information of G
CTA • ~20GeV-100TeV • x10 Sensitivity • Dq~1-2 min • FOV~5-10 deg • ~20 s slew (LST) • ~2015 (?) • ~150€ Large Effective Area ⇒ 100-10000 of GeV-TeVg
Hadronic Emission: pp High energy p collide with ambient p
pp Cross-Section & Multiplicity PDG 0912.0023
Hadronic or Leptonic? Abdo+ 11 Funk 11
Funk 11 Funk 11
Funk 11 Funk 11
Hadronic Emission: pg d-function approximation Bhattacharjee & Sigl 00
Other Processes • Photopair process • Adiabatic loss • Coulomb collision • Bremsstrahlung • Nuclear g-ray line • Photonuclear reactions • EM Cascade • Proton, muon, … synchrotron • High B QED processes, …
§ Radiation Processes • Synchrotron • nm, nc (fast/slow), na • (Fn,max, na, nm, nc) ⇒ (E, n, ee, eB) • Inverse Compton • nIC~g2n • PIC/Psyn=Ug/UB (SSC), EC • e± signatures • Hadronic: pp, pg • Problem: Can index Fnsyn~n1/3 change?