850 likes | 2.88k Views
Complications of Urinary Diversion. By Peter Tran, D.O. Garden City Hospital Resident Talk 12/17/2008. Overview. Classification of urinary diversions Factors influencing complications Complications according to bowel segments Metabolic/physiologic complications
E N D
Complications of Urinary Diversion By Peter Tran, D.O. Garden City Hospital Resident Talk 12/17/2008
Overview • Classification of urinary diversions • Factors influencing complications • Complications according to bowel segments • Metabolic/physiologic complications • Surgical complications: early and late
Clasification of Diversions • Orthotopic • Heterotopic • Continent cutaneous • Non-continent cutaneous • Diversion to GIT
Examples of OrthotopicNeobladders Figure 82-2 Construction of the modified Camey II. A, The ileal loop is folded three times (Z shaped) and incised on the antimesenteric border. B, The reservoir is closed with a running suture to approximate the incised ileum. C, The urethroenteric anastomosis is performed.
Examples of OrthotopicNeobladders Figure 82-3 Construction of the Hautmann ileal neobladder. A, A 70-cm portion of terminal ileum is selected. Note that the isolated segment of ileum is incised on the antimesenteric border. B, The ileum is arranged into an M or W configuration with the four limbs sutured to one another. C, After a buttonhole of ileum is removed on an antimesenteric portion of the ileum, the urethroenteric anastomosis is performed. The ureteral implants (Le Duc) are performed and stented, and the reservoir is then closed in a side-to-side manner.
Examples of OrthotopicNeobladders Figure 82-4 Construction of the ileal neobladder (Studer pouch) with an isoperistaltic afferent ileal limb. A, A 60- to 65-cm distal ileal segment is isolated (approximately 25 cm proximal to the ileocecal valve) and folded into a U configuration. Note that the distal 40 cm of ileum constitutes the U shape and is opened on the antimesenteric border; the more proximal 20 to 25 cm of ileum remains intact (afferent limb). B, The posterior plate of the reservoir is formed by joining the medial borders of the limbs with a continuous running suture. The ureteroileal anastomoses are performed in a standard end-to-side technique to the proximal portion (afferent limb) of the ileum. Ureteral stents are used and brought out anteriorly through separate stab wounds. C, The reservoir is folded and oversewn (anterior wall). D, Before complete closure, a buttonhole opening is made in the most dependent (caudal) portion of the reservoir. E, The urethroenteric anastomosis is performed. F, A cystostomy tube is placed, and the reservoir is closed completely.
Examples of OrthotopicNeobladders Figure 82-5 Construction of the Kock ileal reservoir. A, A total of 61 cm of terminal ileum is isolated. Two 22-cm segments are placed in a U configuration and opened adjacent to the mesentery. Note that the more proximal 17-cm segment of ileum will be used to make the afferent intussuscepted nipple valve. B, The posterior wall of the reservoir is then formed by joining the medial portions of the U with a continuous running suture. C, A 5- to 7-cm antireflux valve is made by intussusception of the afferent limb with the use of Allis forceps clamps. D, The afferent limb is fixed with two rows of staples placed within the leaves of the valve. E, The valve is fixed to the back wall from outside the reservoir. F, After completion of the afferent limb, the reservoir is completed by folding the ileum on itself and closing it (anterior wall). Note that the most dependent portion of the reservoir becomes the neourethra. The ureteroileal anastomosis is performed first, and the urethroenteric anastomosis is completed in a tension-free, mucosa-to-mucosa fashion.
Examples of OrthotopicNeobladders Figure 82-8 Construction of the Mainz ileocolonic orthotopic reservoir. A, An isolated 10 to 15 cm of cecum in continuity with 20 to 30 cm of ileum is isolated. B, The entire bowel segment is opened along the antimesenteric border. Note that an appendectomy is performed. C, The posterior plate of the reservoir is constructed by joining the opposing three limbs together with a continuous running suture. D, An antireflux implantation of the ureters through a sub-mucosal tunnel is performed and stented. E, A buttonhole incision in the dependent portion of the cecum is made that provides for the urethroenteric anastomosis. Note that the ureterocolonic anastomoses are performed before closure of the reservoir. F, The reservoir is closed side to side with a cystostomy tube and the stents exiting.
Examples of OrthotopicNeobladders Figure 82-9 Construction of Le Bag (ileocolonic) orthotopic reservoir. A, A total of 20 cm of ascending cecum and colon, with a corresponding length of adjacent terminal ileum, is isolated. The bowel is opened along the entire antimesenteric border, and the two incised segments are then sewn to one another. This forms the posterior plate of the reservoir. B, This reservoir is folded and rotated 180 degrees into the pelvis with the most proximal portion of the ileum (2 cm non-detubularized) anastomosed to the urethra. C, Modification is performed with complete detubularization of the bowel segment, which is then anastomosed to the urethra.
Examples of Heterotopic Cutaneous Diversion • Continent/catherizable Pouch • Indiana Pouch • Segment of ascending colon with terminal ileum and IC valve as continence mechanism. • Penn Pouch • Same as Indiana pouch except appendix used based on Mitrofanoff principle in which continence mechanism is the appendix. • Gastric Pouch • Segment of stomach and ileum recreated in to a reservoir • Non-Continent • Most popular - ileal loop • Excretion of urine by means of evacuation • Ureterosigmoidostomy • Rectal bladder • Sigmoid hemi-Kock
Factors Influencing Complications • Patient factors • Bowel factors
Patient Factors • Performance status/co-morbidities • Pt/caregiver compliance with CIC • Mobility • Previous XRT • Renal function • Liver function • Body habitus • BMI
Bowel Factors/Technical Factors • Type of intestinal segment used • Length of intestinal segment • Continent vs. incontinent • Method/extend of detubularization • Capacity • Compliance • Refluxing/non-refluxing uretero-enteric anastomosis • Type of diversion chosen
Gastric Complications • Hypochloremic, hypokalemic metabolic alkalosis • Hyper-gastrinemia • Hematuria-dysuria syndrome
Jejunum Complications • Most severe metabolic complications • Hyponatremia • Hyperkalemic, hypochloremic metabolic acidosis • Severe dehydration
Ileal Complications • Hyperchloremic, hypokalemic metabolic acidosis • Vit B12 deficiency
Colonic Complications • Hyperchloremic, hypokalemic metabolic acidosis
Metabolic/Physiologic Complications • Renal deterioration • Electrolyte disturbance • Hypertension • Altered sensorium • Abnormal drug metabolism • Osteomalacia • Abnormal growth/development • Vit deficiency • Anemia • Chronic diarrhea • Hyper-gastrinemia
Electrolyte Disturbance • Colon/Ileum • Hyperchloremic, hypokalemic metabolic acidosis • Stomach • Hypochloremic, hypokalemic metabolic alkalosis • Jejunum • Hyperchloremic, hyperkalemic, hyponatremic metabolic acidosis • Hyperammonemia • Hypomagnesemia • Hypocalcemia
Colon and Ileum • Hyperchloremic, hypokalemic metabolic acidosis • 15% of ileal conduits • 10% severe enough to require Tx • 20% of colon conduits • 15% require Tx • 50% ileal or colonic pouches • 40% require Tx • 80% of ureterosigmoidostomy
Hyperchloremic, hypokalemic metabolic acidosis • Symptoms • Easy fatigability • Anorexia/weight loss • Polydipsia • Lethargy • Exacerbation of diarrhea in GI diversions
Hyperchloremic, hypokalemic metabolic acidosis: MOA • Net absorption of ammonium + chloride • Increased secretion of HCO3 • Impaired distal tubular secretion of hydrogen • Physiologic Response • Increased acid secretion by kidneys • Bone demineralization to buffer acidosis
Hyperchloremic, hypokalemic metabolic acidosis: Treatment • Alkalinizing agent • NaHCO3 • K-Citrate • Na-Citrate • Blockers of Cl transport • Chlorpromazine • Nicotinic acid
Gastric Complications • Hypochloremic, hypokalemic metabolic alkalosis • Rare unless comcomitant renal failure • Severe dehydration, often triggered by vomiting or GI illness • High serum gastrin levels • Overdistension of gastric segment triggers gastrin release
Gastric Complications • Symptoms • Lethargy • Weakness • Respiratory insufficiency • Seizures • Ventricular arrhythmia
Gastric Complications: MOA • H+, K+, and Cl- loss in gastric segment • Net addition of HCO3 • Serum gastrin levels correlate with systemic HCO3 concentration
Gastric Complications: Tx • Acute severe metabolic alkalosis • Empty bladder • NaCl volume replacement • H2 blocker • PPI • Arginine HCl • Surgical removal of gastric segment
Gastric Complications: Tx • Mild/prophylaxis • Oral Na/K supplementation • H2 blockers
Hypokalemia - Incidence • Colonic diversions • 30% reduction in total body K • Ileal diversions • 0-15% reduction
Hypokalemia: MOA • Colonic/Ileal diversions • Ileum may passively reabsorb some K blunting the loss • Chronic metabolic acidosis • Renal K wasting
Hypokalemia • Symptoms • Typically no symptoms • At most severe • Muscle weakness • Paralysis
Hypokalemia: Tx • Correct the acidosis • Beware of acutely worsening K as in moves backto intracellular stores • Oral K supplementation
Altered Sensorium: MOA • Hypomagnesemia • Drug reabsorption • Ammonia encephalopathy
Altered Sensorium: Hypomagnesemia • Renal loss • Chronic diarrhea • Decreased absorption
Altered Sensorium: Hypomagnesemia • Symptoms • Cardiac arrhythmias • Tremor • Tetany • Seizures • Treament • Mg replacement
Ammoniogenic Encephalopathy • Ammonium secreted by the kidney • Ammonia is produced by urease splitting bacteria • Reabsorbed and transferred to liver by portal circulation • Nomally liver copes and coverts ammonia to urea
Ammoniogenic Encephalopathy • Risk Factors • Typically in pre-existing or acquired liver disease • Ureterosigmoidostomy>Colon or ileal conduits • Triggers in setting of liver disease • Constipation • Increased protein load • GI bleed • UTI with ammonia producer • Co-existing CNS depressant use • Renal failure • Normal liver • Bacterial endotoxin – liver dysfunction with normal LFT
Ammoniogenic Encephalopathy: Symptoms • Apathy • Restlessness • Sleep disturbance • Impaired intellectual abililites • Asterixis and lethargy • Stupor • Coma
Ammoniogenic Encephalopathy: Tx • Decrease nitrogen load/remove precipitants • Drain urine diversion • Limit dietary protein intake • Treat any systemic or UTI • Lactulose • Lowers gut pH so more NH4 than NH3 • Promotes non-urease producing bacteria • Decreases transit time of fecal matter • Complexes the ammonia • Neomycin/tetracycline • Eliminate ammonia producing bacteria from the GIT • Arginine glutamate • Complexes ammonia
Abnormal Drug Metabolism • Drugs absorbs in GIT • Drugs excreted unchanged in urine • Reabsorbed in intestinal segment
Abnormal Drug Metabolism • List of drugs • Dilantin • Methotrexate/chemo • Theophylline • Abx (beta-lactams, nitrofurantoin, aminoglycosides) • ChemoTx • Ensure pt well hydrated • Drain diversion with catheter • Consider leukovorin administration with methotrexate
Osteomalacia • Potential long-term complication • Affects children and adults • Bone demineralization • Mineralized component of bone is replace with osteoid
Osteomalacia • Risk Factors • Bowel segment used • Ureterosig most commonly • Colon or ileal cystoplasties • Colon or ileal conduits/neobladders • Renal failure • Chronic untreated metabolic acidosis
Osteomalacia: MOA • Bone buffering of chronic metabolic acidosis • Vit D resistance – less Ca absorption by GIT • Vit D deficiency – acidosis limits vit D production • Sulphate in urine inhibits Ca and Mg re-absorption • Resitance to PTH • = Ca loss
Osteomalacia • Symptoms • Diffuse skeletal pain • Bone tenderness • Fractures • Gait disturbance • Proximal muscle weakness
Osteomalacia • Prevention • Particularly important in postmenopausal women and children • Tx underlying metabolic acidosis • Vit C • Vit D • Activated Vit D metabolite • 1-alpha-hydroxycholecalciferol • Ca supplementation
Vitamin Deficiency • ADEK – fat soluble lost in malabsorption of fat • Vit B12 – absorbed in distal ileum
Vitamin B12 Deficiency: Etiology • Not synthesized by mammals – only dietary source • B12 released from food by enzymes in stomach • Bound to IF in duodenum • Absorbed in terminal ileum • Stored mainly in liver • Total body stores of 2-5mg, loss of 0.1% daily • Takes 2-4 years for defeciency to take effect • 3-20% incidence after terminal ileum resection
Vitamin B12 Deficiency: Symptoms • Neurologic • Peripheral neuropathy • Degenerative changes/demyelination in spinal cord • Voiding dysfunction • Optic neuropathy • Hematologic • Megaloblastic anemia • Inflammation of tongue/mouth • Psychiatric disturbances