1 / 117

Logical representation of preference & nonmonotonic reasoning Jérôme Lang

Logical representation of preference & nonmonotonic reasoning Jérôme Lang Institut de Recherche en Informatique de Toulouse CNRS - Université Paul Sabatier - Toulouse (France). About the meaning of preference The need for compact representations and the role of logic

duyen
Download Presentation

Logical representation of preference & nonmonotonic reasoning Jérôme Lang

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Logical representation of preference & nonmonotonic reasoning Jérôme Lang Institut de Recherche en Informatique de Toulouse CNRS - Université Paul Sabatier - Toulouse (France) • About the meaning of preference • The need for compact representations and the role of logic • Some logical languages for compact preference • representation (a brief survey with examples) • Preference representation and NMR • Other issues

  2. About the meaning of preference • The need for compact representations and the role of logic • Some logical languages for preference representation • Preference representation and NMR • Other issues

  3. preference • has different meanings in different communities • in economics / decision theory: • preference = relative or absolute satisfaction • of an individual when facing • various situations

  4. preference • has different meanings in different communities • in economics / decision theory: • preference = relative or absolute satisfaction • of an individual when facing • various situations • in KR / NMR • preference = [weak] [strict] order • with various meanings • A is more plausible / believed than B  • preferential models, preferential entailment etc. • rule A has priority over rule B

  5. « preference » • has different meanings in different communities • in economics / decision theory: • preference = relative or absolute satisfaction • of an individual when facing • various situations • in KR / NMR • preference = [weak] [strict] order • with various meanings • A is more plausible / believed than B  • preferential models, preferential entailment etc. • rule A has priority over rule B relative (ordinal) uncertainty control

  6. binarypreferences S = G  G cardinal preferences u : S   utility function ordinal preferences  preorder on S fuzzy preferences R fuzzy relation on S R : S  S  [0,1] Preference structure: represents the preferences of an agent over a set S of possible alternatives

  7. About the meaning of preference • The need for compact representations + the role of logic • Some logical languages for preference representation • Preference representation and NMR • Other issues

  8. Complex domains: a state is defined by a tuple of values for a given set of variables Example : preferences on airplane tikcets option = (destination, price, dates, number-changes) preferentially interdependent variables Combinatorial explosion: prohibitive number of alternative 50 destinations, 10 price ranges, 10 departure dates and 10 return dates, 0/1/2 changes 150 000 alternatives Need for concise representations for preferences

  9. Representation and elicitation of preferences agent (user, client…) INTERACTIVE ELICITATION concise form REPRESENTATION preference relation on S preferred alternatives

  10. Why (propositional) logic? • prototypical compact & structured language • good starting point • expressive power • + closeness to human intuition • elicitation issues • efficient and well-studied algorithms • (+ tractable fragments etc.) • optimization issues (find optimal alternatives)

  11. About the meaning of preference • The need for compact representations + the role of logic • A brief survey on propositional logical languages • for preference representation • Preference representation and NMR • Other issues

  12. S = { |  K }    Some logical languages for preference representation 1a. “Basic” propositional representation K propositional formula set of possible alternatives 2 positions maximum to be filled 4 candidates A,B,C,D K = ( A   B)  ( A  C)  ( A  D)  ( B   C)  (B  D)  ( C   D) K = [  2 : A, B, C, D]

  13.         Some logical languages for preference representation 1a. “Basic” propositional representation K B = {1, …, n} set of goals K  1  …  n  such that  « good » states  K   impossible states K   (1  …  n )  such that  « bad » states

  14. Some logical languages for preference representation 1a. “Basic” propositional representation K = [  2 : A, B, C, D] G = { (A  B), (B  C),  D } I would like to hire A or to hire B; if B is hired then I would prefer not to hire C; I would like not to hire D (A,B,  C,  D) hire A and B (A,  B, C,  D) hire A and C (A,  B,  C,  D) hire A only ( A,B,  C,  D) hire B only « good » states

  15.   Some logical languages for preference representation 1b. “Basic” propositional representation + cardinality K B = {1, …, n} set of goals For all   Mod(K), uB() = | {i,  i } |

  16. (A,B) (A, C) (A) (B) (A, D) (B, C) (B, D) (C) ( ) (C, D) (D) Some logical languages for preference representation 1b. “Basic” propositional representation + cardinality K = [  2 : A, B, C, D] ; G = { (A  B), (B  C),  D } u()=3  u()=2  u()=1

  17.      Some logical languages for preference representation 1c. “Basic” propositional representation + inclusion K B = {1, …, n} set of goals For all  ,  ’  Mod(K)    ’ if and only if { i ,  j } i }  { j ,  ’

  18. (A,B) (A, C) (A) (B) (C) ( ) (B, C) 12 23 13 (C, D) (D) Some logical languages for preference representation 1c. “Basic” propositional representation + inclusion K = [  2 : A, B, C, D] ; G = { (A  B), (B  C),  D } 2 3 1 123   (A, D) (B, D)   2

  19.   Some logical languages for preference representation 2. Propositional logic + weights K B = { (1, x1 ), …, (n , xn ) } I propositional formula xi > 0 reward xi * xi < 0 penalty Example: additive weights For all   Mod(K),  xi uB() = i  1 .. N i 

  20.   Some logical languages for preference representation 2. Propositional logic + weights K B = { (1, x1 ), …, (n , xn ) } I propositional formula xi > 0 reward xi * xi < 0 penalty Example: additive weights For all   Mod(K), other aggregation functions  xi uB() = i  1 .. N i 

  21.   Some logical languages for preference representation 2. Propositional logic + weights K B = { (1, x1 ), …, (n , xn ) } I propositional formula xi > 0 reward xi * xi < 0 penalty For all   Mod(K), uB() = F ({xi | , i  1 .. N} ) i 

  22.      i  Some logical languages for preference representation 2. Propositional logic + weights K B = { (1, x1 ), …, (n , xn ) } I propositional formula xi > 0 reward xi * xi < 0 penalty For all   Mod(K), uB() = F ( G ({xi |, i  1 .. N, xi > 0} ) , H ({xj |, i  1 .. N , xi < 0} ) )  j bipolarity

  23. Some logical languages for preference representation 2. Propositional logic + (additive) weights K = [  3 : A, B, C, D, E] ; G = { (B  C, +5) ; (A  C, +6) ; (A  B, -3) ; (D  E, -3) ; (D, +10) ; (E, +8) ; (A, +6) ; (B, +4) ; (C, +2) } only B and C can teach logic only A and C can teach databases A and B would be in the same group (to be avoided) idem for D and E D is the best candidate E is the second best etc.

  24. Some logical languages for preference representation 2. Propositional logic + weights  = (A, D, E,B, C) K = [  3 : A, B, C, D, E] ; G = { (B  C, +5) ; (A  C, +6) ; (A  B, -3) ; (D  E, -3) ; (D, +10) ; (E, +8) ; (A, +6) ; (B, +4) ; (C, +2) } +6 -3 u() = +27 +10 +8 +6

  25. Some logical languages for preference representation 2. Propositional logic + weights ’ = (C, D, E,A, D) K = [  3 : A, B, C, D, E] ; G = { (B  C, +5) ; (A  C, +6) ; (A  B, -3) ; (D  E, -3) ; (D, +10) ; (E, +8) ; (A, +6) ; (B, +4) ; (C, +2) } +5 +6 u(’) = +31 +10 +8 +2

  26. Some logical languages for preference representation 2. Propositional logic + weights u()  K = [  3 : A, B, C, D, E] ; G = { (B  C, +5) ; (A  C, +6) ; (A  B, -3) ; (D  E, -3) ; (D, +10) ; (E, +8) ; (A, +6) ; (B, +4) ; (C, +2) } 31 (C,D,E) (A,C,D) (A,B,D) (A,D,E) (B,C,D) (A,C,E) (B,D,E) (C,D) 29 28 27 24 23

  27. increasing priority Some logical languages for preference representation 3a. Propositional logic + priorities K B1 … Bp B =  B1, …, Bp  stratification of B K = [  2 : A, B, C, D, E] ; B1 = {B  C, A  C,  (D  E),  (D  E)} 1 2 3 4 B2 = {D,A} B3 = {E} B4 = {B, C} 5 6 7 8 9

  28. 3a. Propositional logic + priorities K = [  3 : A, B, C, D, E] ; B1 = {B  C, A  C,  (A  B),  (D  E)} 1 2 3 4 B2 = {D,A} B3 = {E} B4 = {B, C} 5 6 7 8 9 « Best-out » ordering u () = min i,  violates at least a formula of Bi ( = +  if there is no such i)

  29. 3a. Propositional logic + priorities  = (A, B, C,D, E) K = [  3 : A, B, C, D, E] ; B1 = {B  C, A  C,  (A  B),  (D  E)} 1 2 3 4 u () = 1 B2 = {D, A} B3 = {E} B4 = {B, C} 5 6 7 8 9 « Best-out » ordering u () = min i,  violates at least a formula of Bi

  30. 3a. Propositional logic + priorities  = (A, C, D,B, E) K = [  3 : A, B, C, D, E] ; B1 = {B  C, A  C,  (A  B),  (D  E)} 1 2 3 4 u () = 3 B2 = {D,A} B3 = {E} B4 = {B, C} 5 6 7 8 9 « Best-out » ordering u () = min i,  violates at least a formula of Bi

  31. 3a. Propositional logic + priorities K = [  2 : A, B, C, D, E] ; B1 = {B  C, A  C, A  B, D  E} 1 2 3 4 B2 = {D} B3 = {A,E} B4 = {B,C} 5 6 7 8 9 « leximin » ordering [Benferhat et al. 93] w > w’ iff (w satisfies more formulas of B1 than w’) or (w and w’ satisfy the same number of formulas of B1, and w satisfies more formulas of B2 than w’) or (w et w’ satisfy the same number of formulas of B1 and of B2, and w satisfies more formulas of B3 than w’) etc.

  32. 3a. Propositional logic + priorities: leximin ordering K = [  2 : A, B, C, D, E] ; B1 = {B  C, A  C, A  B, D  E} 1 2 3 4 B2 = {D} B3 = {A,E} B4 = {B,C} 5 6 7 8 9 B1 B2 B3 B4 0 1 1 (A,C) 3 1 1 0 (A,D) 3 (B,C) 3 0 0 2 (C,D) 3 1 0 1

  33. 3a. Propositional logic + priorities: leximin ordering K = [  2 : A, B, C, D, E] ; B1 = {B  C, A  C, A  B, D  E} 1 2 3 4 B2 = {D} B3 = {A,E} B4 = {B,C} 5 6 7 8 9 B1 B2 B3 B4 0 1 1 (A,C) 3 1 1 0 (A,D) 3 (B,C) 3 0 0 2 (C,D) 3 1 0 1 (D,E) 1 1 1 0

  34. 3a. Propositional logic + priorities: leximin ordering K = [  2 : A, B, C, D, E] ; B1 = {B  C, A  C, A  B, D  E} 1 2 3 4 B2 = {D} B3 = {A,E} B4 = {B,C} 5 6 7 8 9 B1 B2 B3 B4 0 1 1 (A,C) 3 1 1 0 (A,D) 3 (B,C) 3 0 0 2 (C,D) 3 1 0 1 (D,E) 1 1 1 0

  35. 3a. Propositional logic + priorities: leximin ordering K = [  2 : A, B, C, D, E] ; B1 = {B  C, A  C, A  B, D  E} 1 2 3 4 B2 = {D} B3 = {A,E} B4 = {B,C} 5 6 7 8 9 B1 B2 B3 B4 0 1 1 (A,C) 3 1 1 0 (A,D) 3 (B,C) 3 0 0 2 (C,D) 3 1 0 1 (D,E) 1 1 1 0

  36. Some logical languages for preference representation 3b. Propositional logic + ordered disjunction K [Brewka, Benferhat & Le Berre 02] Y= (j1  j2 …jp ) ideally j1; otherwise (sub-ideally) j2 otherwise j3 etc. B =  Y1, …, Yp 

  37.         Some logical languages for preference representation 3b. Propositional logic + ordered disjunction K Y= (j1  j2 …jp ) ideally j1; otherwise (sub-ideally) j2 otherwise j3 etc. For all   Mod(K), j1 disu(, Y) = 0 if   j1  …  ji-1  ji = i if  = p+1 if   j1  …  jn

  38. For all , ’  Mod(K),  >B ’ iff disu (, B) <leximin disu (’, B) Some logical languages for preference representation 3b. Propositional logic + ordered disjunction K B =  Y1, …, Yp  disu (, B) =  disu (, Y1), …, disu (, Yp) 

  39. Some logical languages for preference representation 3b. Propositional logic + ordered disjunction K B =  F1, …, Fp  K = [  2 : A, B, C, D, E] ;  = (A,E) ’ = (A,B) F1 : (B C)  (B  C) 3 2 F2 : (A C)  (A  C) 2 2 F3 :  (D  E) 1 1 F4 :  (A  B) 1 2 F5 : D  A  E  B  C 2 2 F5 : (= 2 : A,B,C,D,E)  (= 2 : A,B,C,D,E) 1 1

  40. Some logical languages for preference representation 3b. Propositional logic + ordered disjunction K B =  F1, …, Fp  >B K = [  2 : A, B, C, D, E] ;  = (A,E) ’ = (A,B) F1 : (B C)  (B  C) 3 2 F2 : (A C)  (A  C) 2 2 F3 :  (D  E) 11 F4 :  (A  B) 1 2 F5 : D  A  E  B  C 2 2 F5 : (= 2 : A,B,C,D,E)  (= 2 : A,B,C,D,E) 11

  41. 3. Propositional logic + priorities K = [  2 : A, B, C, D, E] ; B1 = {B  C, A  C, A  B, D  E} 1 2 3 4 B2 = {D} B3 = {A,E} B4 = {B, C} 5 6 7 8 9 « discrimin » ordering [Brewka 89] strict inclusion w > w’ iff { j B1, w satisfies j }  { j B1, w’ satisfies j } or ( { j B1, w satisfies j } = { j B1, w’ satisfies j } and { j B2, w satisfies j }  { j B2, w’ satisfies j }) etc.

  42. 3. Propositional logic + priorities : discrimin ordering K = [  2 : A, B, C, D, E] ; B1 = {B  C, A  C, A  B, D  E} 1 2 3 4 B2 = {D} B3 = {A,E} B4 = {B,C} 5 6 7 8 9 B1 B2 B3 B4 - 6- 9 (A,C) 123- (B,C) 123- - -- 89 (A,D) -234 5 -- 9 (C,D) 12-4 5 -- 9

  43. 3. Propositional logic + priorities: discrimin ordering K = [  2 : A, B, C, D, E] ; B1 = {B  C, A  C, A  B, D  E} 1 2 3 4 B2 = {D} B3 = {A,E} B4 = {B,C} 5 6 7 8 9 B1 B2 B3 B4 - 6- 9 (A,C) 123- (B,C) 123- - -- 89 (A,D) 2--4 5 -- 9 (C,D) 12-4 5 -- 9

  44. 3. Propositional logic + priorities: discrimin ordering K = [  2 : A, B, C, D, E] ; B1 = {B  C, A  C, A  B, D  E} 1 2 3 4 B2 = {D} B3 = {A,E} B4 = {B,C} 5 6 7 8 9 B1 B2 B3 B4 - 6- -9 (A,C) 123- (B,C) 123- - -- 89 (A,D) -234 5 6- -- (C,D) 12-4 5 -- -9

  45. 3. Propositional logic + priorities: discrimin ordering K = [  2 : A, B, C, D, E] ; B1 = {B  C, A  C, A  B, D  E} 1 2 3 4 B2 = {D} B3 = {A,E} B4 = {B,C} 5 6 7 8 9 B1 B2 B3 B4 incomparable - 6- -9 (A,C) 123- (B,C) 123- - -- 89 (A,D) -234 5 6- -- (C,D) 12-4 5 -- -9

  46. 3. Propositional logic + priorities: discrimin ordering K = [  2 : A, B, C, D, E] ; B1 = {B  C, A  C, A  B, D  E} 1 2 3 4 B2 = {D} B3 = {A,E} B4 = {B,C} 5 6 7 8 9 B1 B2 B3 B4 leximin discrimin best-out no - 6- -9 (A,C) 123- yes yes (B,C) no no yes 123- - -- 89 (A,D) -234 5 6- -- yes yes yes yes no yes (C,D) 12-4 5 -- -9

  47. Some logical languages for preference representation 4. Propositional logic + distances • K • B = 1, …, p  • d: S  S   • d (, ’) = d (’, ) • d (, ’) = 0 iff  = ’ • (example: d = Hamming distance) • d (, i ) = min {(, ’) | ’ satisfies K  i } • d (, B) = F (d (, 1), d (, 2), …, d (, n) ) •   ’ iff d (, B)  d (’, B) distance-based merging

  48. Some logical languages for preference representation 5. « ceteris paribus » preferences [von Wright 63; Hansson 66; Doyle & Wellman 91] g : j > y For any two states w, w’ such that - w satisfies g j y - w’satisfies g j  y - w and w’coincide on « irrelevant » variables then  >B ’ (+ transitive closure)

  49. Some logical languages for preference representation 5. « ceteris paribus » preferences g : j > y For any two states w, w’ such that - w satisfies g j y - w’satisfies g j  y - w and w’coincide on « irrelevant » variables then  >B ’ (+ transitive closure) e.g. variables outside Var (g)  Var (j)  Var (y) (more sophisticated definitions are possible)

  50. 5. « ceteris paribus » preferences K = { (coffee  tea) } B = {coffee: sugar >  sugar ; tea:  sugar > sugar ; T : coffee > tea >  coffee   tea ; T : croissant >  croissant } (coffee, sugar, croissant) (coffee, sugar, croissant) (coffee, sugar, croissant) (coffee, sugar, croissant) (tea, sugar, croissant) (tea, sugar, croissant) (tea, sugar, croissant) (tea, sugar, croissant) (coffee, tea, , croissant) (coffee, tea, , croissant)

More Related