500 likes | 539 Views
Signals and Systems Lecture 25. The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform. Chapter 9 The Laplace Transform. Appendix Partial Fraction Expansion. Consider a fraction polynomial:.
E N D
Signals and SystemsLecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform
Chapter 9 The Laplace Transform Appendix Partial Fraction Expansion Consider a fraction polynomial: Discuss two cases of D(s)=0, for distinct root and same root.
Chapter 9 The Laplace Transform (1) Distinct root: thus
Chapter 9 The Laplace Transform Calculate A1 : Multiply two sides by (s-1): Let s=1, so Generally
Chapter 9 The Laplace Transform (2) Same root: thus For first order poles:
Chapter 9 The Laplace Transform For r-order poles: Multiply two sides by (s-1)r : So
Chapter 9 The Laplace Transform 9.3 The Inverse Laplace Transform So
Chapter 9 The Laplace Transform The calculation for inverse Laplace transform: (1) Integration of complex function by equation. (2) Compute by Fraction expansion. General form of X(s): Important transform pair: Example 9.9 9.10 9.11
Chapter 9 The Laplace Transform Example 9.9 defining Determine the inverse Laplace transform for all possible ROC. §9.3 The Inverse Laplace Transform
Chapter 9 The Laplace Transform Pole vector: Zero vector: §9.4 Geometric evaluation of the Fourier transform 几何求值from the Pole-Zero plot
Chapter 9 The Laplace Transform Example 9.12 §9.4.1 First-Order System τ——time constant (时间常数) controls the speed of response of first-order systems
Chapter 9 The Laplace Transform §9.4.2 Second-Order System
Chapter 9 The Laplace Transform §9.4.3 All-Pass Systems (全通系统) First-Order System 零极点相对于jω轴对称 全通系统:零极点个数相同,且相对于jω轴对称。
Chapter 9 The Laplace Transform §9.5 Properties of the Laplace Transform §9.5.1 Linearity of the Laplace Transform
Chapter 9 The Laplace Transform Example 9.13
Chapter 9 The Laplace Transform Example pole-zero plot §9.5.2 Time Shifting
Chapter 9 The Laplace Transform ROC的边界平移 §9.5.3 Shifting in s-Domain
Chapter 9 The Laplace Transform
Chapter 9 The Laplace Transform When §9.5.4 Time Scaling
Chapter 9 The Laplace Transform
Chapter 9 The Laplace Transform §9.5.5 Conjugation
Chapter 9 The Laplace Transform §9.5.6 Convolution Property
Chapter 9 The Laplace Transform Example 不存在傅立叶变换
Chapter 9 The Laplace Transform Example Determine §9.5.7 Differentiation in the Time Domain
Chapter 9 The Laplace Transform §9.5.8 Differentiation in the s-Domain
Chapter 9 The Laplace Transform more generally,
Chapter 9 The Laplace Transform Example Determine Solution:
Chapter 9 The Laplace Transform Example Determine
Chapter 9 The Laplace Transform ① R与 无公共部分,积分的拉氏变换不存在。 的积分不存在拉氏变换 §9.5.9 Integration in the Time Domain ROC的变化:
Chapter 9 The Laplace Transform ② R与 部分重叠。 ③ R与 部分重叠。
Chapter 9 The Laplace Transform 为真分式 §9.5.10 The Initial- and Final-Value Theorems 初值定理和终值定理 1. The Initial-Value Theorem Contains no impulses or higher order singularities at the origin.
Chapter 9 The Laplace Transform 的极点均在jω轴左侧,允许在s=0有一个一阶极点 2. The Final-Value Theorem 终值不存在。
Chapter 9 The Laplace Transform Example 1 Determine Example 2 Determine §9.5.11 运用基本性质求解拉氏变换
Chapter 9 The Laplace Transform Determine Example 3
Chapter 9 The Laplace Transform ——System Function or Transfer Function §9.7 Analysis and Characterization of LTI Systems Using the Laplace Transform
Chapter 9 The Laplace Transform causal stable Causal §9.7.1 Causality For a system with a rational system function, §9.7.2 Stability (稳定性)
Chapter 9 The Laplace Transform Example 9.20 Causal , unstable system noncausal , stable system anticausal , unstable system (反因果)
Chapter 9 The Laplace Transform 如果 为有理函数 的极点均在 轴左侧, 且 系统因果、稳定 Stability of Causal System Consider the following causal systems ——Stable ——unstable
Chapter 9 The Laplace Transform causal For a system with a rational system function, stable Causal
Chapter 9 The Laplace Transform ROC §9.7.3 LTI Systems Characterized by Linear Constant-Coefficient Differential Equations
Chapter 9 The Laplace Transform Example Consider a causal LTI system whose input and output related through an linear constant-coefficient differential equation of the form Determine the unit step response of the system.
Chapter 9 The Laplace Transform Example 9.24 Consider a RLC circuit in Figure 9.27 R L + C + Figure 9.27 - -
Chapter 9 The Laplace Transform Example 9.25 • Consider an LTI system with input , • Output . • Determine the system function. • Justify the properties of the system. • Determine the differential equation of the system.
Chapter 9 The Laplace Transform Example Consider a causal LTI system , b——unknown constant Determine the system function and b.
Chapter 9 The Laplace Transform Example 9.26 An LTI system: 1. The system is causal. 2. is rational and has only two poles: s= - 2 and s=4. 3. 4. Determine Example 9.26 An LTI system: 1. The system is causal. 2. is rational and has only two poles: s=-2 and s=-4. 3. 4. Determine
Chapter 9 The Laplace Transform 已知一因果稳定系统, 为有理函数,有一极点 Example 9.27 在s=-2处,原点(s=0)处没有零点,其余零极点未知, 判断下列说法是否正确。 1. 的傅立叶变换收敛。 3. 为一因果稳定系统的单位冲激响应。 4. 至少有一个极点。 2. 5. 为有限长度信号。
Chapter 9 The Laplace Transform 7. 6. 在s=+2处有极点 在s=-2处有极点 无法判断正确与否。
Chapter 9 The Laplace Transform 是系统函数为 例 设信号 的因果全通系统的输出。 1. 求出至少有两种可能的输入 都能产生 。 2. 若已知 问输入 是什么? 3. 如果已知存在某个稳定(但不一定因果)的系统, 它若以 作输入,则输出为 ,问这个输入 是什么?系统的单位冲激响应是什么?
Problem Set • P728 9.28 • P729 9.31