1 / 49

Signals and Systems Lecture 25

Signals and Systems Lecture 25. The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform. Chapter 9 The Laplace Transform. Appendix Partial Fraction Expansion. Consider a fraction polynomial:.

dwaddell
Download Presentation

Signals and Systems Lecture 25

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Signals and SystemsLecture 25 The Laplace Transform ROC of Laplace Transform Inverse Laplace Transform

  2. Chapter 9 The Laplace Transform Appendix Partial Fraction Expansion Consider a fraction polynomial: Discuss two cases of D(s)=0, for distinct root and same root.

  3. Chapter 9 The Laplace Transform (1) Distinct root: thus

  4. Chapter 9 The Laplace Transform Calculate A1 : Multiply two sides by (s-1): Let s=1, so Generally

  5. Chapter 9 The Laplace Transform (2) Same root: thus For first order poles:

  6. Chapter 9 The Laplace Transform For r-order poles: Multiply two sides by (s-1)r : So

  7. Chapter 9 The Laplace Transform 9.3 The Inverse Laplace Transform So

  8. Chapter 9 The Laplace Transform The calculation for inverse Laplace transform: (1) Integration of complex function by equation. (2) Compute by Fraction expansion. General form of X(s): Important transform pair: Example 9.9 9.10 9.11

  9. Chapter 9 The Laplace Transform Example 9.9 defining Determine the inverse Laplace transform for all possible ROC. §9.3 The Inverse Laplace Transform

  10. Chapter 9 The Laplace Transform Pole vector: Zero vector: §9.4 Geometric evaluation of the Fourier transform 几何求值from the Pole-Zero plot

  11. Chapter 9 The Laplace Transform Example 9.12 §9.4.1 First-Order System τ——time constant (时间常数) controls the speed of response of first-order systems

  12. Chapter 9 The Laplace Transform §9.4.2 Second-Order System

  13. Chapter 9 The Laplace Transform §9.4.3 All-Pass Systems (全通系统) First-Order System 零极点相对于jω轴对称 全通系统:零极点个数相同,且相对于jω轴对称。

  14. Chapter 9 The Laplace Transform §9.5 Properties of the Laplace Transform §9.5.1 Linearity of the Laplace Transform

  15. Chapter 9 The Laplace Transform Example 9.13

  16. Chapter 9 The Laplace Transform Example pole-zero plot §9.5.2 Time Shifting

  17. Chapter 9 The Laplace Transform ROC的边界平移 §9.5.3 Shifting in s-Domain

  18. Chapter 9 The Laplace Transform

  19. Chapter 9 The Laplace Transform When §9.5.4 Time Scaling

  20. Chapter 9 The Laplace Transform

  21. Chapter 9 The Laplace Transform §9.5.5 Conjugation

  22. Chapter 9 The Laplace Transform §9.5.6 Convolution Property

  23. Chapter 9 The Laplace Transform Example 不存在傅立叶变换

  24. Chapter 9 The Laplace Transform Example Determine §9.5.7 Differentiation in the Time Domain

  25. Chapter 9 The Laplace Transform §9.5.8 Differentiation in the s-Domain

  26. Chapter 9 The Laplace Transform more generally,

  27. Chapter 9 The Laplace Transform Example Determine Solution:

  28. Chapter 9 The Laplace Transform Example Determine

  29. Chapter 9 The Laplace Transform ① R与 无公共部分,积分的拉氏变换不存在。 的积分不存在拉氏变换 §9.5.9 Integration in the Time Domain ROC的变化:

  30. Chapter 9 The Laplace Transform ② R与 部分重叠。 ③ R与 部分重叠。

  31. Chapter 9 The Laplace Transform 为真分式 §9.5.10 The Initial- and Final-Value Theorems 初值定理和终值定理 1. The Initial-Value Theorem Contains no impulses or higher order singularities at the origin.

  32. Chapter 9 The Laplace Transform 的极点均在jω轴左侧,允许在s=0有一个一阶极点 2. The Final-Value Theorem 终值不存在。

  33. Chapter 9 The Laplace Transform Example 1 Determine Example 2 Determine §9.5.11 运用基本性质求解拉氏变换

  34. Chapter 9 The Laplace Transform Determine Example 3

  35. Chapter 9 The Laplace Transform ——System Function or Transfer Function §9.7 Analysis and Characterization of LTI Systems Using the Laplace Transform

  36. Chapter 9 The Laplace Transform causal stable Causal §9.7.1 Causality For a system with a rational system function, §9.7.2 Stability (稳定性)

  37. Chapter 9 The Laplace Transform Example 9.20 Causal , unstable system noncausal , stable system anticausal , unstable system (反因果)

  38. Chapter 9 The Laplace Transform 如果 为有理函数 的极点均在 轴左侧, 且 系统因果、稳定 Stability of Causal System Consider the following causal systems ——Stable ——unstable

  39. Chapter 9 The Laplace Transform causal For a system with a rational system function, stable Causal

  40. Chapter 9 The Laplace Transform ROC §9.7.3 LTI Systems Characterized by Linear Constant-Coefficient Differential Equations

  41. Chapter 9 The Laplace Transform Example Consider a causal LTI system whose input and output related through an linear constant-coefficient differential equation of the form Determine the unit step response of the system.

  42. Chapter 9 The Laplace Transform Example 9.24 Consider a RLC circuit in Figure 9.27 R L + C + Figure 9.27 - -

  43. Chapter 9 The Laplace Transform Example 9.25 • Consider an LTI system with input , • Output . • Determine the system function. • Justify the properties of the system. • Determine the differential equation of the system.

  44. Chapter 9 The Laplace Transform Example Consider a causal LTI system , b——unknown constant Determine the system function and b.

  45. Chapter 9 The Laplace Transform Example 9.26 An LTI system: 1. The system is causal. 2. is rational and has only two poles: s= - 2 and s=4. 3. 4. Determine Example 9.26 An LTI system: 1. The system is causal. 2. is rational and has only two poles: s=-2 and s=-4. 3. 4. Determine

  46. Chapter 9 The Laplace Transform 已知一因果稳定系统, 为有理函数,有一极点 Example 9.27 在s=-2处,原点(s=0)处没有零点,其余零极点未知, 判断下列说法是否正确。 1. 的傅立叶变换收敛。 3. 为一因果稳定系统的单位冲激响应。 4. 至少有一个极点。 2. 5. 为有限长度信号。

  47. Chapter 9 The Laplace Transform 7. 6. 在s=+2处有极点 在s=-2处有极点 无法判断正确与否。

  48. Chapter 9 The Laplace Transform 是系统函数为 例 设信号 的因果全通系统的输出。 1. 求出至少有两种可能的输入 都能产生 。 2. 若已知 问输入 是什么? 3. 如果已知存在某个稳定(但不一定因果)的系统, 它若以 作输入,则输出为 ,问这个输入 是什么?系统的单位冲激响应是什么?

  49. Problem Set • P728 9.28 • P729 9.31

More Related