260 likes | 464 Views
A High Sensitivity Bioimpedance Detector B. B. Patil P. C. Pandey V. K. Pandey S. M. M. Naidu. National Conference on Virtual and Intelligent Instrumentation (NCVII -09), BITS Pilani, 13-14 Nov. 2009 ______________________________________________________________. IIT Bombay.
E N D
A High Sensitivity Bioimpedance DetectorB. B. PatilP. C. PandeyV. K. PandeyS. M. M. Naidu National Conference on Virtual and Intelligent Instrumentation (NCVII -09), BITS Pilani, 13-14Nov. 2009 ______________________________________________________________ IIT Bombay
Presentation Outline • Introduction • Bioimpedance Detector Circuit • Test Results • Conclusion
Introduction • Bioimpedance Detector Circuit • Test Results • Conclusion
Introduction (1/4) Sensing of the Variation in the Bioimpedance Noninvasive technique for monitoring ♦ changes in the fluid volume ♦ underlying physiological events Impedance Cardiography A noninvasive technique for monitoring stroke volume and obtaining diagnostic information on cardiovascular functioning by sensingthe variation in the thoracic impedance during the cardiac cycle. Sensing of the Thoracic ImpedanceA current ( 20 kHz – 1MHz, <5mA) passed through a pair of surface electrodes and the resulting amplitude modulated voltage sensed using the same or another pair of electrodes.
Introduction (2/4) ICG Instrumentation
Introduction (3/4) Bioimpedance Detection ♦ Detection of extremely low modulation index ( 0.2 – 2 %)♦ External noise suppression ♦ Carrier ripple rejectionAM Detector Ckts ♦Peak detector ♦Precision rectifier det. ♦ Synchronous det.♦ Slicing amplifier det. (Fourcin, 1979): high sensit., increased ripple♦ Synchronous S/H at carrier peak: very low ripple
Introduction (4/4) Proposed Technique Features♦High sensitivity♦Carrier ripple suppression without filtering♦ Noise reductionRealization ♦ Slicing amplifier with sampling at the peaks of the sinusoidal excitation : high sensitivity, low ripple ♦ Summation of the signals obtained by sampling the +ve & -ve peaks : external noise reduction
Introduction • Bioimpedance Detector Circuit • Test Results • Conclusion
Bioimpedance Detector Ckt(1/6) Demodulation ♦ Two channels of slicing amplifier with synch. S/H at the +ve and –ve peaks of the excitation ♦ Addition of the two outputs: suppression of noise & low freq. drift Slicing Amplifier ♦ Realized using voltage clamp amplifier IC AD8037 (Greater of the V+ & VL inputs connected as the non-inverting input) ♦ Cktconfig. and resistors selection: ♦ V+ > VL: Output diff. i/p ♦ V+ < VL: Zero output Sample-and-hold (IC HA5351) Sampled near the excitation peak & held for ripple suppression
Bioimpedance Detector Ckt(2/6) Demodulator using Slicing Amplifier & S/H IC3 : AD8037 voltage clamp amp., IC4: HA5351 S/H
Bioimpedance Detector Ckt(3/6) Slicing Amplifier Waveforms Vo1: slicing amp o/p Vo2: S/H o/p
Bioimpedance Detector Ckt(4/6) Bioimpedance Detector AM demod. of the sensed voltage using two channels of slicing amplifier with sync. S/H
Bioimpedance Detector Ckt(5/6) Sinusoidal Excitation & S/H Pulse Generation Two direct digital synthesizer (DDS) chips (AD 9834) ♦DDS-1: Sinusoidal o/p for current excitation ♦ DDS-2: Square o/p with settable phase shift for S/H pulses Circuit Features Microcontroller based digital control of ♦ Excitation current level using a digital pot. ♦ Excitation frequency ♦ Slicing amplifier ref. level, using a digital pot. ♦ Phase shift between the two DDS outputs for precise alignment of hold edge of S/H pulses to the +ve and –ve peaks of the excitation
Bioimpedance Detector Ckt(6/6) Detector Ckt Waveforms Vs: DDS-1 o/p (exc.) VΦ: DDS-2 o/p (phase shifted w.r.t. Vs) V3 & V4: slicing amp. Outputs V5 & V6: S/H outputs VSH1 & VSH2: sampling pulses
Introduction • Bioimpedance Detector Circuit • Test Results • Conclusion
Test results (1/5) Impedance Detector Performance Parameters ♦ Range of basal resistance ♦ Sensitivity (ΔVo / ΔR) ♦ Frequency response Thorax Simulator for Testing the Bioimpedance Detector ♦ Basal resistance (settable: 20 200 ) ♦ Periodic resistance variation (settable: 0.1 1.2 %) ♦ µC & digital pot.: settable ΔR, F, waveshape
Test results (2/5) Thorax Simulator Ckt I1 & I2: current injection E1 & E2: voltage sensing ♦ Variation in the thorax impedance ♦ DM & CM voltages (ECG) ♦ Sync. output
Test results (3/5) Microcontroller and Power Supply Ckt of the Thorax Simulator
Test results (4/5) Testing Using the Thorax Simulator ♦ Excitation: 1 mA rms, 100 kHz ♦ Thorax Simulator F: 1 - 250 Hz Ro = 196 ΔR / Ro = 0.1 to 1.2%
(a) (b) (c) (d) Vo Vo Vo Vo Test results (5/5) Sync. & Det. Output Waveforms F = 8 Hz, Ro = 196 . Resistance variation ΔR / Ro: • 1.2 % sinusoidal • 0.6 % sinusoidal • 1.2 % square • 0.6 % square • Time scale: 40 ms/div, Ch1: 5 V/div, Ch2: 500 mV/div.
Introduction • Bioimpedance Detector Circuit • Test Results • Conclusion
Conclusion (1/1) A bioimpedance detector for ICG instrumentation ♦ Slicing amplifier for AM demod. with mod. index < 2% ♦ Sync. sampling for ripple rejection without lowpass filtering the output ♦ Digital control of ▫ Exc. parameters (Frequency, current level) ▫ Demod. parameters (Slicing amp. ref., Φ-shift for sync. S/H) Ckt operation verified using a thorax simulator for detecting ΔR / Rowell below 2%, sinusoidal & square wave variations with freq. of 1 - 250 Hz.
B. B. Patil, P. C. Pandey, V. K. Pandey, and S. M. M. Naidu, “A high sensitivity bioimpedance detector”, Proc. National Conference on Virtual and Intelligent Instrumentation (NCVII-09), BITS Pilani, 13-14Nov. 2009.Abstract: A bioimpedance detector is developed as part of instrumentation for impedance cardiography. It uses slicing amplifier for increasing the sensitivity for the impedance variation and synchronous sampling for a ripple-free output. The circuit provides digital control of excitation current and frequency used for the measurement. Its operation has been verified using a thorax simulator for detecting the impedance variations well below 2%. Prof. P. C. Pandey Address: EE Dept. / IIT Bombay / Powai Mumbai 400 076 / India / E-mail: pcpandey [at] iitb.ac.in
References • J. Nyboer, Electrical Impedance Plethysmography. 2nd ed., Springfield, Massachusetts: Charles C. Thomas, 1970. • L. E. Baker, "Principles of impedance technique", IEEE Eng. Med. Biol. Mag., vol. 8,pp. 11 - 15, 1989. • M. Min, T. Parve, A. Ronk, P. Annus, and T. Paavle, "Synchronous sampling and demodulation in an instrument for multifrequency bioimpedance measurement", IEEE Trans. Inst. Measurements, vol. 56, pp. 1365 - 1372, 2007. • W. G. Kubicek, F. J. Kottke, and M. U. Ramos, "The Minnesota impedance cardiograph – theory and applications", Biomed. Eng., vol. 9, pp. 410 - 416, 1974. • M. Qu, Y. Zhang, J. G. Webster, and W. J. Tompkins, "Motion artifact from spot and band electrodes during impedance cardiography", IEEE Trans. Biomed. Eng., vol. 33, pp. 1029 - 1036, 1986. • J. Fortin, W. Habenbacher, and A. Heller, "Non-invasive beat-to-beat cardiac output monitoring by an improved method of transthoracic bioimpedance measurement", Comp. Bio. Med.,vol. 36, pp. 1185 - 1203, 2006. • J. N. Sarvaiya, P. C. Pandey, and V. K. Pandey, “An impedance detector for glottography”, IETE J. Research, vol 55, no. 3, pp 100-105, 2009. • A. J. Fourcin, "Apparatus for speech pattern derivation", U. S. Patent No. 4,139,732, Feb. 13, 1979. • B. B. Patil, "Instrumentation for impedance cardiography", M.Tech. Dissertation, Biomedical Engineering, Indian Institute of Technology Bombay, 2009. • V. K. Pandey, P. C. Pandey, and J. N. Sarvaiya, "Impedance simulator for testing of instruments for bioimpedance sensing", IETE J. Research, vol. 54, no. 3, pp. 203 - 207, 2008. • B. B. Patil, V. K. Pandey, and P. C. Pandey, "A microcontroller based thorax simulator for testing and calibration of impedance cardiographs", in Proc. Int. Symp. Emerging Areas in Biotechnology & Bioengineering (ISEABB), Mumbai, India, 2009, pp. 122-125.