460 likes | 706 Views
Mar. 9 th -11 th , 2010, Munich. Munich Satellite Navigation Summit 2010. BeiDou (COMPASS) Navigation Satellite System Development. China Satellite Navigation Office. 1. The government al website of BeiDou S atellite N avigation S ystem was launched on Jan. 15, 2010.
E N D
Mar. 9th-11th, 2010, Munich Munich Satellite Navigation Summit 2010 BeiDou (COMPASS) Navigation Satellite System Development China Satellite Navigation Office 1
The governmental website of BeiDou Satellite Navigation System was launched on Jan. 15, 2010. • “www.beidou.gov.cn” or “www.compass.gov.cn”. • The English versionwill be onlinesoon. 2
Contents 1. Basic principles 2. System General Description 3. System Deployment 4. Applications 5. Compatibility and Interoperability 6. Conclusion 3
Contents 1. Basic principles 2. System General Description 3. System Deployment 4. Applications 5. Compatibility and Interoperability 6. Conclusions 4
China determined to develop an independent satellite navigation system in 1980s’. The BeiDou navigation demonstration system was completed in 2003, since then it has been used in many areas. Now the BeiDou navigation satellite system is under construction. 5
Basic Principles • Openness • Independency • Compatibility • Gradualness 6
Basic Principles • Openness BeiDou will provide high quality open services free of charge from direct users, and worldwide use of BeiDou is encouraged. China will widely and thoroughly communicate with other countries on satellite navigation issues to facilitate the development of GNSS technologies and the industry. 7
Basic Principles • Independency China will develop and operate BeiDou system independently, and BeiDou can independently provide services for global users and particularly provide high quality services in Asia-Pacific region . 8
Basic Principles • Compatibility BeiDou will pursue solutions to realize compatibility and interoperability with other satellite navigation systems. 9
Basic Principles • Gradualness The construction of BeiDou system follows a step-by-step pattern based on technical and economic evolution in China. BeiDou will provide long-term continuous services for users, improve system performance and ensure smooth transition during all life cycle. 10
Contents 1. Basic principles 2. System General Description 3. System Deployment 4. Applications 5. Compatibility and Interoperability 6. Conclusions 11
System Description • System Structure • Signal Characteristics • Time System • Coordinate System • Services and Performances 12
System Structure • Space Segment 5 GEO satellites and 30 Non-GEO satellites GEO Satellite MEO Satellite Constellation 13
The ground segment consists of Master Control Station, Upload Stations and Monitor Stations. System Structure • Ground Segment 14
System Structure The user segment consists of BeiDou user terminals and interoperable terminals with other GNSS. • User Segment User terminals of BeiDou system 15
System structure • User Segment The development of user terminals is making progress steadily and related policies and standards are being studied and developed. The technical preparation for publishing BeiDou SIS ICD (v1.0) has been finished, and the ICD as well as its updatewill be gradually released on the governmental website of BeiDou System. 16
Signal Characteristics • Frequencies B1: 1559.052~1591.788MHz B2: 1166.22~1217.37MHz B3: 1250.618~1286.423MHz 17
Signal Characteristics • CP II: B1, B2, and B3 as below 18
Time System • BeiDou time is named as BDT, traced to UTC, and synchronized with UTC within 100ns. The epoch time of BDT is UTC 00d 2006. • Interoperability of BDT with GPS/Galileo time was considered in the design of BeiDou time system. The offset between BDT and GPST/ GST will be measured and broadcast. 20
Coordinate System BeiDou uses China Geodetic System 2000 (CGS2000) Coinciding with ITRF at a few cm level, and for most applications the difference between CGS2000 and ITRF can be ignored. 21
Services and Performances • Two kinds of global services • Open Service:free and open to users • Positioning Accuracy: 10 m • Timing Accuracy: 20 ns • Velocity Accuracy: 0.2 m/s • Authorized Service: ensure high reliable use even in complex situation. 22
Services and Performances • Two kinds of regional services • Wide area differential service • Positioning accuracy: 1 m • short message service 23
Contents 1.Basic principles 2.System General Description 3.System Deployment 4.Applications 5. Compatibility and Interoperability 6.Conclusion 24
Deployment Step • 1st Step—Demonstration System • COMPASS Phase I (CP I) After 3 GEO satellites being launched since 2000, the demonstration system is able to provide basic services including positioning, timing and short-message communication in regional area. Currently, all the 3 satellites work normally in orbit. Oct 31,2000 140E Dec 21,2000 80E May 25 ,2003 110.5E 25
BeiDou will cover Asia-Pacific area around 2012, and will cover all over the world before 2020. Deployment Step • 2nd Step—Global System COMPASS Phase II (CP II) Around 2012 COMPASS Phase III (CP III) Before 2020 26
COMPASS-M1 Launch The first MEO satellite named COMPASS-M1 was launched in Apr. 2007 which secured the ITU related filing. Many technical experimentations have been implemented using COMPASS-M1. 27
COMPASS-G2 Launch The first GEO satellite named COMPASS-G2 was launched by a Long March-3C carrier rocket at the Xichang Satellite Launch Center on Apr.15 2009. The GEO navigation satellite related technologies have been verified using the satellite. 28
GEO Satellite Launch Latterly The 3rd satellite of BeiDou was launched by a Long March-3C carrier rocket from the Xichang Satellite Launch Center on Jan.17 2010. The satellite is also the 2nd GEO satellite. 29
On Jan. 22, the satellite was located at 160°E and started transmitting signals. • Now the satellite is in-orbit test. 30
Launch Schedule • More than 10 satellites will be put in orbit and the system will provide regional service before the end of 2012. 31
Contents 1.Basic principles of the State Policy 2.System General Description 3.System Deployment 4.Applications 5.Compatibility and Interoperability 6.Conclusion 32
Applications • BeiDou Navigation Demonstration System has played important roles in various areas. • Surveying and mapping • Communication • Water conservancy • Disaster mitigation • Marine • Transportation • Mining • Forest fire rescue • etc. 33
Contents 1.Basic principles of the State Policy 2.System General Description 3.System Deployment 4.Applications 5.Compatibility and Interoperability 6.Conclusion 34
Views on Compatibility and Interoperability Related Bilateral Activities Compatibility and Interoperability 35
Compatibility: the ability of multiple satellite navigation system to be used separately or together, without causing harmful interference with use of each individual service or signal. International Telecommunication Union provides a framework for discussion on radiofrequency compatibility. Compatibility 36
Spectrum overlap: There actually exist some cases of frequency overlap between signals of different systems and it is feasible for navigation systems to share the same frequency spectrum. The frequency spectrum overlap of open signals is beneficial for the realization of interoperability for many applications. Compatibility 37
Spectrum separation ofauthorized service : The authorized service signal spectrum separation with open service signals is beneficial. Signal design should consider many factors. Due to the quite limit of frequency resources, authorized signal spectrum separation is very difficult at present. It’s very difficult to satisfy the frequency resource requirements of modernization signals of existing systems and the signals of new systems to be built. Compatibility 38
Interoperability: the ability of open services of multiple satellite navigation system to be used together to provide better capabilities at the user level than would be achieved by relying solely on one service, without significantly increasing the complexity of receiver. Interoperability 39
Benefit gained is larger than cost paid Provide better capabilities at the user level Be easy for developing and manufacturing of interoperable receivers Broadcast interoperability information including the time differences between various System Time mutually Comparative max received power is beneficial for interoperability Common frequency spectrum is important Frequency diversity is beneficial for the improvement of anti-jamming capability Possible interoperable signal s B1-C :1575.42MHz B2a:1176.45MHz B2b:1207.14MHz Interoperability 40
RelatedBilateral Activities BeiDou GPS Four meetings on frequencycompatibilitycoordination : • The 1st Meeting was held in Geneva in June 2007. • The 2nd Meeting was held in Xi’an in May 2008. • The 3rd Meeting was held in Geneva in Oct 2008. • The 4th Meeting was held in Sanya in Dec 2009. 41
Related Bilateral Activities BeiDou Galileo • The 1st frequency compatibility coordination meeting was held in Beijing in May 2007. • The 1st Technical Working Group meeting on Compatibility and Interoperability was held in Beijing in Sep 2008. • The 2nd TWG meeting was held in Beijing in Dec 2008. • The 3rd TWG meeting was held in Brussels in Jun 2009. • The 2nd frequency compatibility coordination meeting was held in Beijing in Jan 2010. • The 4th TWG meeting was held in Beijing in Jan 2010. 42
Related Bilateral Activities GLONASS BeiDou • The frequency compatibility coordination meeting was held in Moscow in Jan 2007. 43
Contents 1.Basic principles of the State Policy 2.System General Description 3.System Deployment 4.Applications 5.Compatibility and Interoperability 6.Conclusion 44
Conclusion • Currently, BeiDou is developing as planned. • As an important GNSS, BeiDouseeks win-win development with other systems through active cooperation and mutual benefits. 45
Thanks for your attention! 46