1 / 42

Summary Talk Few Body 18 Ivo Šlaus R. Bošković Institute and TUNL, Duke U niversity

Summary Talk Few Body 18 Ivo Šlaus R. Bošković Institute and TUNL, Duke U niversity. I. 50 years ago II. Paradigm change in the NN studies III. Paradigm change in 3B theories IV. Technology we develop changes us V. Few-body research - results, questions

dyre
Download Presentation

Summary Talk Few Body 18 Ivo Šlaus R. Bošković Institute and TUNL, Duke U niversity

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Summary Talk Few Body 18Ivo ŠlausR. Bošković Institute and TUNL, Duke U niversity I. 50 years ago II. Paradigm change in the NN studies III. Paradigm change in 3B theories IV. Technology we develop changes us V. Few-body research - results, questions VI. Is there an end for few-body research? VII. Few-body research community VIII. Challenges IX. On being a physicist (Acknowledgement)

  2. Nuclear Forces Experiments Few-body theory Gartenhouse ’55 LASL ’53-’69 Signell- Zagreb ’61-’70 Faddeev ‘60 Marshak’58 ann = -21.7±1 fm OBE 3H:-18±3,7Li(n,tα)n - fusion Bryan- Rice, BNL ’65-’74 Mitra ‘62 Scott ‘69 Sequential (FSI), QFS Amado’63 3NF Caltech, UC Berkeleyseparable Primakoff- 4He levels, 3He? Alt - Holstein ’39 UCLA ’64-’72 Grassberger - n!/ m!(n-m)! nn QFS, NNγ Sandhas ‘67 Fujita- IKO - Ad, Zagreb ‘71 AGS Miyazawa ‘57 BOL-system, 4π emuls. (NN on & off, 3NF)

  3. II. Paradigm change in the NN studies Hybrid OBE Phenomenological 3NF Kukulin CDBonn AV14 TM Doleschall Shirokov TM99’(χS) AV18 UIX IL 1-5 χEFT χPT (Q/Λ)n next-to-next-to-next-to-leading order N3LO R. Machleidt et al, J.J. De Swart et al, V.J. Pandaripandhe et al, U. G. Meissner et al

  4. TABLE 1 χ2 for various NN potentials compared to NN data

  5. TABLE 2Deuteron and some very light nuclei

  6. TABLE 3. BE (MeV) of 3  A  16 with 3NF

  7. CONCLUSIONS • High precision NN potentials → χ2 = 1.0 to NN data below 350 MeV ΔσT / ΔσL data → χ2 = 1.08 2) N3LO needed 3) Correct ordering of energy levels of light nuclei, e.g. 9Be, 10B with IL 2 (strong LS) AV18 contains EM AV18 fit to 17 states → ave deviation 7.32 MeV AV18+UIX 2.02 MeV AV18 + IL 3 0.04 MeV AV18+IL2 fit to 39 states below 12C < 0.7 MeV

  8. III. Paradigm change in 3B theories • Rigorous 3B: Glöckle, Witala, Sauer, Deltuva, Fonseca: Δ + EM • GFMC • NCSM - sensitivities - excellent fit - evidence for 3NF: energy levels of light nuclei and elastic and inelastic scattering (NB: strong LS in Ay and in ordering levels)

  9. IV. Technology we develop changes our research and us ACCELERATORS: 17,500 = 120 (E > 1 GeV); 1000 “low E” research; 100 synchrotrons more than 7,500 radiotherapy and 7,000 ion implantation IUCF, TUNL, HIγS, KVI, MAMI, CELSIUS, LEGS, RIKEN..Jlab... RIB: ISOLDE, SPIRAL, ISAC, Lln, RIBF, RIBBL...2011? 14Be(4ms), 8He(119ms)....10C(19s), 18Ne(17s) COSY, Nuclotron, DAΦNE P*ANDA+FAIR+HESR 1011p* to study c in hadron media DETECTORS: 76Ge, KamLAND, IceCube (South P).... SALAD, SCANDAL, WASA, ANKE, Crystal ball....... COMPUTERS: valves/cards → PC (25), supercomputers, DNA (Shapiro), quantum computer

  10. V. Few-body research - results, questions V 1. Evidence for 3NF • Energy levels A ≤ 16, 10B (3+) +Ili; full N3LO • PSA of Nd: 4PJ vs NN 3PJ • σt (E=150 - 200 MeV) • σmin(θ=100o-160o) at E = 95 MeV and other E • Kkij Ep = 22.7 MeV • Ay, iT11 Cyy Ep = 197 MeV • 72 kinematic configurations KVI Ed = 130 MeV

  11. Comparison between 3B and 130 MeV data

  12. V 2. Symmetries • CKM Δ=1 – (|Vud|2 + |Vus|2 + |Vub|2)=0.0043±0.0019, 2 σ! Vud=0.97377±0.00024; Vus=0.2272±0.001; Vub=3.96x10-3 Δfr = 0.0004±0.011, Δsr = 0.032±0.181, Δfc = 0.001±0.005 compatible with unitarity • CP violation Elect. dipole: n<6x10-26ecm; e = (0.07±0.07)10-26ecm A non-zero value requires both P and T violation. Neutrino vs antineutrino → lepton sector (neutrino have mass, Σi mi ≤ 1eV from WMAP)

  13. 3) CPT invariance - equality of masses and τ of particles and antiparticles: (mK*o – mKo)/mKo< 5x10-18 4) Conservation of lepton numbers Neutrinoless double β decay: ΔL = 2: (Z,A) → (Z+2,A)+e-+e- 76Ge τ> 1.9x1025 y (CL 90%) 5) Time variation of fundamental constants Δα’/α ≤ 10-3 , (6.4±1.3) 10-16/y from quasar line absorption BBN: 2H and Li primordial abundances np→dγ 30 - 130 keV (HIγS + EFT)

  14. 6) Supersymmetric particle searches neutralino m(χoi) >46 GeV CL 95% chargino m(χ±i) > 94 GeV CL 95% selectron m(se) > 73 GeV CL 95% squark m(sq) > 259 GeV CL 95% gluino m(g) > 195 GeV CL 95%

  15. 7) CD from π±πo and CSB from md≠mu, ed≠eu 1) Exptl and χ quark model values for scattering lengths anpappann(fm) Exp-23.7480.009-17.30.3*-18.90.4 χQM -23.749-17.807-18.539 • *Experimental result is –7.8130.004 2) 3H – 3He BE difference (keV) Experimental764 Coulomb 676 Mn≠Mp 14 CSB NN 65  22 CSB 3N 5 Total 760  22

  16. 3) Nolen – Schiffer anomaly 4) Superratio π+π- on 3H/3He 5) D(d,α)πo 228 & 232 MeV IUCF 12.7±2.2 & 15.1±3.1 pb vs EFT 23 & 30.8 pb 6) Asymmetry in σ(θ) of H(n,d)πo TRIUMF (17.2 ± 8st± 5.5sy)10-4 vs EFT ≤ 69x10-4 7) CS πN small CSB 8) Λ separation energies in 3ΛH vs 3ΛHe after removing Coulomb 390 keV 9) ΔA = An - Ap

  17. A = An – Ap (in 10-4)

  18. TABLE 5 Charge Symmetry Breaking (energies in keV, ERP in fm)

  19. V 3. Experimental data “not compatible” with “current theories” • Discrepancies between πNN cc from ≠observables • 3He(γ,p)d and 3He(γ,pp)n at 10.2 and 16 MeV at TERAS Cross sections for the reactions 3He(,p)d and 3He(,pp)n E(MeV) AV18 AV18+UIX Exptl (,p)d (mb) 10.2 1.01 0.96 0.770.05 (,p)d (mb) 16.0 0.71 0.72 0.650.05 (,pp)n (mb) 10.2 0.55 0.490.150.05 (,pp)n (mb) 16.0 1.07 1.04 0.910.06 Prel. 12.8 MeV linearly polarized  from HIS at forward angles n energy spectra peak at lower En ≠ CDB+Coulomb.

  20. 3) pd capture XS, Axx and Ayyat 140 – 200 MeV RCNP ≠ calc with 3NF 4) σ(θ) 108 – 190 MeV 5) Ay puzzle E≤ 25 MeV & at E = 150 – 190 MeV 6) σ(θ), Ay. Kyy’ and Kxx’ at 250 MeV 7) ann 8) σ(θ) and Ayy at 19 MeV H(d,pp)n in SCRE 9) Space starpd: 10.3 - 130 MeV; nd: 10.3 - 25 MeV 10) pp and nn QFS (25 MeV nn this conf) 11) Axx, Ayy, Axz in H(d,pp)n at 135 MeV/nucleon 12) Lithium problem: 7Li BBN ≈ 2x observational values

  21. VI. Is there an end for few-body research?Dark”Energy” 73%, Dark”Matter” 22.6%, BM 4.4%; T = 13.7± 0.2 Gy 1) Strange matter, “strangelets”, 3ΛH to 209ΛBi, 6ΛΛHe, 10ΛΛBe and 13ΛΛB. Λ Λ interaction weaker than thought before, N, Λ, Σ and Ξ interactions Nijmegen group 2) Exotic states: 4He(Kstop,p)”3baryon”, M = 3117, Γ<21 MeV (?), states around 2 GeV QM predicted not found 3)η-physics, η-mesic nuclei, ηN scattering length; η→ πoγγΓex=0.45±0.09st± 0.08sy eV test for χPT: Γ=0.42±0.2eV;

  22. 4) Hybrids (qq*g) and Glueballs (gg) Smoking guns JPC = 0--, 1-+, 2+-.... Evidence: in pπ-→π-π+π-p at 18 GeV/c 1-+, 5) Hadron in media could ≠ from free ? 6) Neutron and proton drip-lines, e.g. X(31F,x) pb; Efimov effect, Thomas effect; QFR and “2 spectators QFS”; Borromean, samba and tango nuclei 7) NNγ:”off-shell NN amplitude is as a matter of principle an unmeasurable quantity in NNγ” (1964→75→2000) (Brayshaw, Noyes, Polyzou and Glöckle: off shell – 3NF) SURPRISES ARE MORE THAN LIKELY

  23. VII. Few-body research community astrophysics | {particle, nuclear - FB - atomic, condensed matter} | chemistry, biomed FB conferences every 2-3 years since 1967 European FB since 1975, Asian-Pacific since 1999 (typically 200-400 participants from 20 – 40 countries) FewBody Systems 1986 (W. Plessas) APS FB 330 vs APS NP 2476

  24. VIII CHALLENGES • Nuclear interaction at N3LO (with 3NF) even N4LO implying CD and CSB • More EFT χPT studies required • Rigorous 3B, 4B, GFMC, NCSM using NnLO with n ≥ 3 and CD + CSB • Relativity • Short range: dibaryon – Moscow/Tübingen; p-e EFT potentials should give the same result for all observables • Can all EFT parameters be uniquel determined? • Latitude in fine tuning PS and parameters?

  25. 8) π-N scattering data should get πNN cc 9) “Several” potentials - temporary 10) N – hyperon and H – H interaction 11) Mesons, baryons, resonances hybrids, glueballs, etc – topics of conferences: NSTAR, MENU, ETAMESON, e.g. np→dη relativistic descriptions and PWA workshops, eg Abilene, Zagreb, Tuzla 12) Symmetries

  26. 13) FB systems ideal for “new physics” search - weak charge of p (Jlab) - K*N scatt. length to test χSB in systems with strangenness using DEAR and SIDDHARTA 14) New facilities: Bernal – Polanyi polemics 15) “Discrepancies” solved using “proper” “3NF” or ? However, there are other “discrepancies” 16) Therefore, several approaches desirable 17) Rennaisance of nuclear physics 3B actually more complex !

  27. IX. On being a physicist Knowledge-based society Paul Crutzen, Martin Rees John Carey “The Faber Book of Science” A.Toffler Aristotle Rurtherford G. Galilei

More Related