1 / 15

Phenomenological models of gene expression

Phenomenological models of gene expression. Translation. mRNA (m). protein (p). Transcription. Biological Model. for most ‘reactants’. Mathematical Abstraction. Mass-balance:. Steady-state. Some rough timescale estimates for E. coli. Event. Symbol. Description.

early
Download Presentation

Phenomenological models of gene expression

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Phenomenological models of gene expression Translation mRNA (m) protein (p) Transcription Biological Model for most ‘reactants’ Mathematical Abstraction Mass-balance: Steady-state Some rough timescale estimates for E. coli Event Symbol Description Ball-park Magnitude Estimates Transcription am Rate of mRNA synthesis ~ few nM/min < 60 nM/min mRNA Degradation b-1m Average mRNA lifetime ~ few min < 20 min Translation ap Translation rate ~ few mRNA/min For E. coli, Protein Degradation b-1p Average protein lifetime ~ doubling time (dilution) (* Faster with active proteolysis*)

  2. R Transcriptional Repressor Slope: ‘Sensitivity’ or ‘Cooperativity’ ‘Capacity’ Idea: We use gR(r) to modify transcription rate: R Simple example – the autorepressor Recall: Transcriptional regulation Tells us how likely it is that RNAp will bind.

  3. More interesting example – the toggle switch R1 R1 R2 R2 This is where the ‘circuit’ comes in Expect it to exist in two mutually exclusive states • If: • R1 is high, then R2 is low • R2 is high, then R1 is low What can we do with this? Coupled system of nonlinear differential equations…

  4. Bistability Stable Equilibrium Points Exercise: The same with a) b) R1 R2 Unstable Equilibrium Point A R R3 What do you expect them to do? Write out a kinetic model. Simplification – Typically mRNA is short-lived, and protein is not. Assume mRNA attains steady-state very quickly compared to protein.

  5. A In reality, molecule numbers are discrete. B B Changes are not infinitesimal – C(t) is not differentiable! A C C C ~ 10 C ~ 100 C ~ 1000 Assumes [C] is continuous and differentiable. Number of molecules of C ~ 1023 (mole)

  6. Recall: For E. coli, for most ‘reactants’ Probability of being in state n at time t. n is the ‘inventory’ Instead of mass-balance, we use probability balance. Transition Probability Master Equation:

  7. m-1 m m+1 Gain Loss Some notation : the step-operator Example – mRNA synthesis Difficult to solve! Mixes continuous time evolution with discrete state evolution.

  8. Variance Mean-squared Mean Often we don’t need the whole distribution, just the moments IF the transition probabilities are linear, we can use moment generating function Subsequent derivatives of F give a linear combination of the moments of P: Turns a difference equation into a differential equation!

  9. Fano factor for a Poisson process. (Fluctuations scale as ) Mean equal to variance is the footprint of a Poisson process. We can measure how close to Poisson a process is likely to be by the Fanofactor A dimensionless measure is the fractional deviation Exercise: Repeat the same analysis for unregulated protein expression. Find the steady-state fractional deviation in the protein number.

  10. 25 20 15 10 5 0 0 50 100 150 Number of b-Gal Molecules Time (min) Cai L, Friedman N, Xie XS (2006) Stochastic protein expression in individual cells at the single molecule level. Nature 440:358-362. Answer: ‘b’ is the burstiness of the process. It measures amplification of mRNA by translation ‘b’ is the average number of proteins translated from an errant transcript Remember: Moment generating functions only work if the transition probabilities are linear No dimerization, no feedback … No regulation!

  11. Main approximation ideas – • Numerical simulation algorithms (Gillespie’s algorithm) • Direct simulation of a trajectory n(t) that conforms to the unknown distribution P(n,t) Perturbation schemes (van Kampen’s Linear Noise Approximation) Separate fluctuations from deterministic description using molecule number to scale. Stochastic description - Stoichiometry and propensity How fast? How much? Toggle switch example - Degradation Stoichiometry Matrix Synthesis

  12. 600 400 200 8 16 24 600 Five-times less molecules… State fairly localized about the stable points 160 400 120 80 200 40 8 16 24 200 400 600 Gillespie’s algorithm 1. Estimate when next reaction occurs, . 2. Estimate which reaction will occur, . 3. Update the system: Repeat…

  13. comes from Poisson statistics Deterministic Concentration Fluctuations Linear noise approximation 1. Separate the deterministic evolution from the fluctuations 2. ‘Smooth-out’ the difference operator Reaction-rate equations Linear Fokker-Planck equation

  14. Linear Fokker-Planck equation Reaction-rate equations Drift Diffusion Can show Dissipation Fluctuation For the variance Gaussian distribution ‘Fluctuation-dissipation’ relation

  15. 600 400 200 200 400 600 We can compare the two approaches, numerical and analytical • Numerical simulations work well: • few molecules, few reactions • quick overview • compelling pictures • Perturbation methods work well: • large system size (nearly deterministic) • more systematic exploration of parameters • analytic expression of moments • fluctuations in time-dependent (oscillatory) systems

More Related