50 likes | 239 Views
Order of function transformations. Horizontal shifts Horizontal stretch/compression Reflection over y-axis Vertical stretch/compression Reflection over x-axis Vertical shifts
E N D
Order of function transformations • Horizontal shifts • Horizontal stretch/compression • Reflection over y-axis • Vertical stretch/compression • Reflection over x-axis • Vertical shifts • Important note: Horizontal and vertical dilations are applied only to the portion of the function which is shifted horizontally. You NEVER multiply the dilation factors with vertical shifts.
Order of function transformations • Example: f(x) = x² Shift 2 units left, 4 units up, horizontal stretch by a factor of 6, vertical compression by a factor of ½ and reflect over x-axis. Start with Horizontal shift: (x + 2)² Horizontal stretch: ((1/6)(x + 2))² Vertical compression: ½((1/6)(x + 2))² Reflection over x-axis: - ½((1/6)(x + 2))² Finally, Vertical shift: - ½((1/6)(x + 2))² + 4
Order of function transformations • Example: g(x) = x² + 3 Shift 3 units right, reflect across y-axis, stretch vertically by a factor of 2, 2 units up. Start with horizontal shift: (x – 3)² + 3 Reflect across y-axis: (- x – 3)² + 3 Stretch vertically: 2(-x – 3)² + 3 Finally, vertical shift: 2(-x – 3)² +3+2=2(-x -3)² +5
Order of function transformations • Now your turn: • Given: x + 2 • Shift 5 units to the right, 3 up, reflect across y-axis, reflect across x-axis, vertical stretch by a factor of 2.