1 / 52

Review

Review. We would like to have the capacity of disk at the speed of the processor: unfortunately this is not feasible. So we create a memory hierarchy: each successively lower level contains “most used” data from next higher level exploits temporal locality

eden-estes
Download Presentation

Review

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Review • We would like to have the capacity of disk at the speed of the processor: unfortunately this is not feasible. • So we create a memory hierarchy: • each successively lower level contains “most used” data from next higher level • exploits temporal locality • do the common case fast, worry less about the exceptions (design principle of MIPS) • Locality of reference is a Big Idea

  2. Outline • Block Size Tradeoff • Types of Cache Misses • Fully Associative Cache • N-Way Associative Cache • Block Replacement Policy • Multilevel Caches • Cache write policy

  3. Block Size Tradeoff (1/3) • Benefits of Larger Block Size • Spatial Locality: if we access a given word, we’re likely to access other nearby words soon • Very applicable with Stored-Program Concept: if we execute a given instruction, it’s likely that we’ll execute the next few as well • Works nicely in sequential array accesses too

  4. Block Size Tradeoff (2/3) • Drawbacks of Larger Block Size • Larger block size means larger miss penalty • on a miss, takes longer time to load a new block from next level • If block size is too big relative to cache size, then there are too few blocks • Result: miss rate goes up • In general, minimize Average Access Time = Hit Time x Hit Rate + Miss Penalty x Miss Rate

  5. Block Size Tradeoff (3/3) • Hit Time = time to find and retrieve data from current level cache • Miss Penalty = average time to retrieve data on a current level miss (includes the possibility of misses on successive levels of memory hierarchy) • Hit Rate = % of requests that are found in current level cache • Miss Rate = 1 - Hit Rate

  6. Valid Bit Cache Data Tag B 3 B 2 B 1 B 0 Extreme Example: One Big Block • Cache Size = 4 bytes Block Size = 4 bytes • Only ONE entry in the cache! • If item accessed, likely accessed again soon • But unlikely will be accessed again immediately! • The next access will likely to be a miss again • Continually loading data into the cache butdiscard data (force out) before use it again • Nightmare for cache designer: Ping Pong Effect

  7. Miss Rate Miss Penalty Exploits Spatial Locality Fewer blocks: compromises temporal locality Block Size Block Size Average Access Time Increased Miss Penalty & Miss Rate Block Size Block Size Tradeoff Conclusions

  8. Types of Cache Misses (1/2) • Compulsory Misses • occur when a program is first started • cache does not contain any of that program’s data yet, so misses are bound to occur • can’t be avoided easily, so won’t focus on these in this course

  9. Types of Cache Misses (2/2) • Conflict Misses • miss that occurs because two distinct memory addresses map to the same cache location • two blocks (which happen to map to the same location) can keep overwriting each other • big problem in direct-mapped caches • how do we lessen the effect of these?

  10. Dealing with Conflict Misses • Solution 1: Make the cache size bigger • fails at some point • Solution 2: Multiple distinct blocks can fit in the same Cache Index?

  11. Fully Associative Cache (1/3) • Memory address fields: • Tag: same as before • Offset: same as before • Index: non-existent • What does this mean? • no “rows”: any block can go anywhere in the cache • must compare with all tags in entire cache to see if data is there

  12. 4 31 0 Byte Offset Cache Tag (27 bits long) Cache Data Valid Cache Tag : B 0 B 31 B 1 = = = = : : : : = Fully Associative Cache (2/3) • Fully Associative Cache (e.g., 32 B block) • compare tags in parallel

  13. Fully Associative Cache (3/3) • Benefit of Fully Assoc Cache • no Conflict Misses (since data can go anywhere) • Drawbacks of Fully Assoc Cache • need hardware comparator for every single entry: if we have a 64KB of data in cache with 4B entries, we need 16K comparators: infeasible

  14. Third Type of Cache Miss • Capacity Misses • miss that occurs because the cache has a limited size • miss that would not occur if we increase the size of the cache • sketchy definition, so just get the general idea • This is the primary type of miss for Fully Associative caches.

  15. N-Way Set Associative Cache (1/4) • Memory address fields: • Tag: same as before • Offset: same as before • Index: points us to the correct “row” (called a set in this case) • So what’s the difference? • each set contains multiple blocks • once we’ve found correct set, must compare with all tags in that set to find our data

  16. N-Way Set Associative Cache (2/4) • Summary: • cache is direct-mapped with respect to sets • each set is fully associative • basically N direct-mapped caches working in parallel: each has its own valid bit and data

  17. Cache Index Valid Cache Tag Cache Data Cache Data Cache Tag Valid Cache Block 0 Cache Block 0 : : : : : : Adr Tag Compare Compare 1 0 Mux Sel1 Sel0 OR Cache Block Hit Two-way Set Associative Cache

  18. N-Way Set Associative Cache (3/4) • Given memory address: • Find correct set using Index value. • Compare Tag with all Tag values in the determined set. • If a match occurs, it’s a hit, otherwise a miss. • Finally, use the offset field as usual to find the desired data within the desired block.

  19. N-Way Set Associative Cache (4/4) • What’s so great about this? • even a 2-way set assoc cache avoids a lot of conflict misses • hardware cost isn’t that bad: only need N comparators • In fact, for a cache with M blocks, • it’s Direct-Mapped if it’s 1-way set assoc • it’s Fully Assoc if it’s M-way set assoc • so these two are just special cases of the more general set associative desgin

  20. 4 Byte Direct Mapped Cache Cache Index Memory Address Memory 0 0 1 1 2 2 3 3 4 5 6 7 8 9 A B C D E F Associative Cache Example • Recall this is how a simple direct mapped cache looked.

  21. Cache Index Memory Address Memory 0 0 0 1 1 2 1 3 4 5 6 7 8 9 A B C D E F Associative Cache Example • Here’s a simple 2 way set associative cache.

  22. Block Replacement Policy (1/2) • Direct-Mapped Cache: index completely specifies position which position a block can go in on a miss • N-Way Set Assoc (N > 1): index specifies a set, but block can occupy any position within the set on a miss • Fully Associative: block can be written into any position • Question: if we have the choice, where should we write an incoming block?

  23. Block Replacement Policy (2/2) • Solution: • If there are any locations with valid bit off (empty), then usually write the new block into the first one. • If all possible locations already have a valid block, we must pick a replacement policy: rule by which we determine which block gets “cached out” on a miss.

  24. Block Replacement Policy: LRU • LRU (Least Recently Used) • Idea: cache out block which has been accessed (read or write) least recently • Pro: temporal locality => recent past use implies likely future use: in fact, this is a very effective policy • Con: with 2-way set assoc, easy to keep track (one LRU bit); with 4-way or greater, requires complicated hardware and much time to keep track of this

  25. Block Replacement Example • We have a 2-way set associative cache with a four word total capacity and one word blocks. We perform the following word accesses (ignore bytes for this problem): 0, 2, 0, 1, 4, 0, 2, 3, 5, 4 How many hits and how many misses will there be for the LRU block replacement policy?

  26. set 0 set 1 set 0 0 set 1 set 0 0 2 set 1 lru set 0 0 2 set 1 set 0 0 lru set 1 1 set 0 0 4 lru set 1 1 Block Replacement Example: LRU loc 0 loc 1 lru 0 • 0: miss, bring into set 0 (loc 0) • Addresses 0, 2, 0, 1, 4, 0, ... lru 2 • 2: miss, bring into set 0 (loc 1) lru • 0: hit • 1: miss, bring into set 1 (loc 0) lru 1 lru 4 • 4: miss, bring into set 0 (loc 1, replace 2) lru • 0: hit

  27. Ways to reduce miss rate • Larger cache • limited by cost and technology • hit time of first level cache < cycle time • More places in the cache to put each block of memory - associativity • fully-associative • any block any line • k-way set associated • k places for each block • direct map: k=1

  28. Big Idea • How chose between options of associativity, block size, replacement policy? • Design against a performance model • Minimize: Average Access Time = Hit Time + Miss Penalty x Miss Rate • influenced by technology and program behavior • Create the illusion of a memory that is large, cheap, and fast - on average

  29. Example • Assume • Hit Time = 1 cycle • Miss rate = 5% • Miss penalty = 20 cycles • Avg mem access time = 1 + 0.05 x 20 = 2 cycle

  30. DRAM $ $2 Improving Miss Penalty • When caches first became popular, Miss Penalty ~ 10 processor clock cycles • Today 1000 MHz Processor (1 ns per clock cycle) and 100 ns to go to DRAM  100 processor clock cycles! MEM Proc Solution: another cache between memory and the processor cache: Second Level (L2) Cache

  31. L2 hit time L2 Miss Rate L2 Miss Penalty Analyzing Multi-level cache hierarchy DRAM Proc $ $2 L1 hit time L1 Miss Rate L1 Miss Penalty Avg Mem Access Time = L1 Hit Time + L1 Miss Rate * L1 Miss Penalty L1 Miss Penalty = L2 Hit Time + L2 Miss Rate * L2 Miss Penalty Avg Mem Access Time = L1 Hit Time + L1 Miss Rate * (L2 Hit Time + L2 Miss Rate * L2 Miss Penalty)

  32. Typical Scale • L1 • size: tens of KB • hit time: complete in one clock cycle • miss rates: 1-5% • L2: • size: hundreds of KB • hit time: few clock cycles • miss rates: 10-20% • L2 miss rate is fraction of L1 misses that also miss in L2 • why so high?

  33. Example (cont) • Assume • L1 Hit Time = 1 cycle • L1 Miss rate = 5% • L2 Hit Time = 5 cycles • L2 Miss rate = 15% (% L1 misses that miss) • L2 Miss Penalty = 100 cycles • L1 miss penalty = 5 + 0.15 * 100 = 20 • Avg mem access time = 1 + 0.05 x 20 = 2 cycle

  34. Example: without L2 cache • Assume • L1 Hit Time = 1 cycle • L1 Miss rate = 5% • L1 Miss Penalty = 100 cycles • Avg mem access time = 1 + 0.05 x 100 = 6 cycles • 3x faster with L2 cache

  35. Set Associative or Fully Associative: • Random • LRU (Least Recently Used) Associatively: 2-way 4-way 8-way Size lru vs random 16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0% 64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5% 256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

  36. What to do on a write hit? • Write-through • update the word in cache block and corresponding word in memory • Write-back • update word in cache block • allow memory word to be “stale” => add ‘dirty’ bit to each line indicating that memory needs to be updated when block is replaced => OS flushes cache before I/O !!! • Performance trade-offs?

  37. Write Buffer for Write Through • Processor: writes data into the cache and the write buffer • Memory controller: write contents of the buffer to memory • Works fine if: Store frequency (w.r.t. time) << 1 / DRAM write cycle • Memory system designer’s nightmare: • Store frequency (w.r.t. time) -> 1 / DRAM write cycle • Write buffer saturation Cache Processor DRAM Write Buffer

  38. Things to Remember (1/2) • Caches are NOT mandatory: • Processor performs arithmetic • Memory stores data • Caches simply make data transfers go faster • Each level of memory hierarchy is just a subset of next higher level • Caches speed up due to temporal locality: store data used recently • Block size > 1 word speeds up due to spatial locality: store words adjacent to the ones used recently

  39. Things to Remember (2/2) • Cache design choices: • size of cache: speed v. capacity • direct-mapped v. associative • for N-way set assoc: choice of N • block replacement policy • 2nd level cache? • Write through v. write back? • Use performance model to pick between choices, depending on programs, technology, budget, ...

  40. The Art of Memory System Design Workload or Benchmark programs Processor reference stream <op,addr>, <op,addr>,<op,addr>,<op,addr>, . . . op: i-fetch, read, write Memory Optimize the memory system organization to minimize the average memory access time for typical workloads $ MEM

  41. 1 KB Direct Mapped Cache with 32 B Blocks • For a 2 ** N byte cache: • The uppermost (32 - N) bits are always the Cache Tag • The lowest M bits are the Byte Select (Block Size = 2 ** M) 31 9 4 0 Cache Tag Example: 0x50 Cache Index Byte Select Ex: 0x01 Ex: 0x00 Stored as part of the cache “state” Valid Bit Cache Tag Cache Data : Byte 31 Byte 1 Byte 0 0 : 0x50 Byte 63 Byte 33 Byte 32 1 2 3 : : : : Byte 1023 Byte 992 31

  42. Cache Data Cache Tag Valid Cache Block 0 : : : Compare A Two-way Set Associative Cache • N-way set associative: N entries for each Cache Index • N direct mapped caches operates in parallel • Example: Two-way set associative cache • Cache Index selects a “set” from the cache • The two tags in the set are compared in parallel • Data is selected based on the tag result Cache Index Valid Cache Tag Cache Data Cache Block 0 : : : Adr Tag Compare 1 0 Mux Sel1 Sel0 OR Cache Block Hit

  43. Cache Index Valid Cache Tag Cache Data Cache Data Cache Tag Valid Cache Block 0 Cache Block 0 : : : : : : Adr Tag Compare Compare 1 0 Mux Sel1 Sel0 OR Cache Block Hit Disadvantage of Set Associative Cache • N-way Set Associative Cache versus Direct Mapped Cache: • N comparators vs. 1 • Extra MUX delay for the data • Data comes AFTER Hit/Miss decision and set selection • In a direct mapped cache, Cache Block is available BEFORE Hit/Miss: • Possible to assume a hit and continue. Recover later if miss.

  44. A Summary on Sources of Cache Misses • Compulsory (cold start or process migration, first reference): first access to a block • “Cold” fact of life: not a whole lot you can do about it • Note: If you are going to run “billions” of instruction, Compulsory Misses are insignificant • Conflict (collision): • Multiple memory locations mappedto the same increase associativity • Capacity: • Cache cannot contain all blocks access by the program • Solution: increase cache size • Invalidation: other process (e.g., I/O) updates memory

  45. Source of Cache Misses Quiz Direct Mapped N-way Set Associative Fully Associative Cache Size: Small, Medium, Big? Compulsory Miss: Conflict Miss Capacity Miss Invalidation Miss Choices: Zero, Low, Medium, High, Same

  46. Improving Cache Performance: 3 general options 1. Reduce the miss rate, 2. Reduce the miss penalty, or 3. Reduce the time to hit in the cache.

  47. 4 Questions for Memory Hierarchy • Q1: Where can a block be placed in the upper level? (Block placement) • Q2: How is a block found if it is in the upper level? (Block identification) • Q3: Which block should be replaced on a miss? (Block replacement) • Q4: What happens on a write? (Write strategy)

  48. Q4: What happens on a write? • Write through—The information is written to both the block in the cache and to the block in the lower-level memory. • Write back—The information is written only to the block in the cache. The modified cache block is written to main memory only when it is replaced. • is block clean or dirty? • Pros and Cons of each? • WT: read misses cannot result in writes • WB: no writes of repeated writes • WT always combined with write buffers so that don’t wait for lower level memory

  49. Write Buffer for Write Through • A Write Buffer is needed between the Cache and Memory • Processor: writes data into the cache and the write buffer • Memory controller: write contents of the buffer to memory • Write buffer is just a FIFO: • Typical number of entries: 4 • Works fine if: Store frequency (w.r.t. time) << 1 / DRAM write cycle • Memory system designer’s nightmare: • Store frequency (w.r.t. time) -> 1 / DRAM write cycle • Write buffer saturation Cache Processor DRAM Write Buffer

  50. Write Allocate versus Not Allocate • Assume: a 16-bit write to memory location 0x0 and causes a miss • Do we read in the block? • Yes: Write Allocate • No: Write Not Allocate 31 9 4 0 Cache Tag Example: 0x00 Cache Index Byte Select Ex: 0x00 Ex: 0x00 Valid Bit Cache Tag Cache Data : 0x00 Byte 31 Byte 1 Byte 0 0 : Byte 63 Byte 33 Byte 32 1 2 3 : : : : Byte 1023 Byte 992 31

More Related