450 likes | 1.05k Views
肿瘤的表观遗传调控 ( Epigenetic Regulation of Cancer ). 主讲:罗志勇 教授. 中南大学生物科学与技术学院 分子生物学系. Chromatin packaging. 表观遗传学概念. 表观遗传 ( epigenetics ) 的概念是在 1942 年由 Waddington 提出。指 DNA 序列不发生变化但是基因表达却发生了可遗传的改变,也就是说基因型未变化而表型却发生了改变,这种变化是细胞内除了遗传信息以外的其他可遗传物质的改变,并且这种改变在发育和细胞增殖过程中能稳定地传递下去。. Cancer epigenetics.
E N D
肿瘤的表观遗传调控(Epigenetic Regulation of Cancer) 主讲:罗志勇 教授 中南大学生物科学与技术学院 分子生物学系
表观遗传学概念 • 表观遗传(epigenetics)的概念是在1942年由Waddington提出。指DNA序列不发生变化但是基因表达却发生了可遗传的改变,也就是说基因型未变化而表型却发生了改变,这种变化是细胞内除了遗传信息以外的其他可遗传物质的改变,并且这种改变在发育和细胞增殖过程中能稳定地传递下去。
Cancer epigenetics In addition to having genetic causes, cancer can also be considered an epigenetic disease. Regulation by genetics involves a change in the DNA sequence, whereas epigenetic regulation involves alteration in chromatin structure and methylation of the promoter region
表观遗传学的特点: • 可遗传的,即这类改变通过有丝分裂或减数分裂,能在细胞或个体世代间遗传; • 可逆性的基因表达调节,也有较少的学者描述为基因活性或功能的改变; • 没有DNA序列的改变或不能用DNA序列变化来解释。 • 表观遗传修饰主要包括DNA以及一些与DNA密切相关的蛋白质(例如组蛋白)的化学修饰,另外某些非编码的RNA也在表观遗传修饰中起着重要的作用。 5 5
Epigenetic Regulation of Cancer Global Hypomethylation Epigenetics Regulates: Cell Cycle Control DNA Damage Apoptosis Invasion X-Chromosome Inactivation Imprinting Aging Site Specific Hypermethylation Regulating Factors Dietary Hormonal Genetic Histone Modifications DNA Methyltransferases Histone Methyltransferases Histone Acetylases/Deacetylases Verma M, Srivastava S. Lancet Oncol. (2002) 3:755-63.
表观遗传修饰从多个水平调控基因表达 • DNA: DNA甲基化 • 蛋白质:组蛋白修饰 • 染色质:染色质重塑 • RNA:非编码RNA
DNA甲基化 DNA甲基化(DNA methylation)是研究得最清楚、 也是最重要的表观遗传修饰形式,通过将S一腺苷甲硫氨酸作为甲基供体,并在DNA甲基转移酶(DNA methyltransferase,DNMT)的催化下,CpG二核苷酸中的胞嘧啶环上5′位置的氢被活性甲基所取代,从而转变成为5甲基胞嘧啶(5-methylcytosine,5mC)。
Enzymatic methylation of the C–5 position of cytosine residues can effect epigenetic inheritance by altering the expression of genes and by transmission of DNA methylation patterns through cell division. Thus, in addition to its well–known role in deamination mutational hotspots in human DNA, DNA methylation may contribute to gene inactivation in cancer.
哺乳动物基因组中5mC占胞嘧啶总量的2%-7%,约70%的5mC存在于CpG二连核苷。哺乳动物基因组中5mC占胞嘧啶总量的2%-7%,约70%的5mC存在于CpG二连核苷。 • 在结构基因的5’端调控区域, CpG二连核苷常常以成簇串联形式排列,这种富含CpG二连核苷的区域称为CpG岛(CpG islands),其大小为500-1000bp,约56%的编码基因含该结构。 • 基因调控元件(如启动子)所含CpG岛中的5mC会阻碍转录因子复合体与DNA的结合。 • DNA甲基化一般与基因沉默相关联; • 非甲基化一般与基因的活化相关联; • 而去甲基化往往与一个沉默基因的重新激活相关联。
癌细胞的整个基因组水平处于低甲基化状态,比正常低20%~60%,这种低甲基化大多发生于编码区和内含子区域,以及约占人类基因组20%~30%的重复序列区癌细胞的整个基因组水平处于低甲基化状态,比正常低20%~60%,这种低甲基化大多发生于编码区和内含子区域,以及约占人类基因组20%~30%的重复序列区 • 抑癌基因启动子区域CpG岛高度甲基化,且与DNA结合的组蛋白广泛去乙酰化
Esteller, and J. G. Herman. Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumors. J Pathol, 2001.
Gene silencing DNA methylation is a powerful mechanism for the suppression of gene activity. There is reciprocal relationship between the density of methylated cytosine residues and the transcriptional activity of a gene. The methyl groups do not affect base pairing but can influence protein–DNA interactions by protruding into the major groove.
●The strong effect of 5–methylcytosine (5mC) in mammalian promoter regions suggests that DNA methylation inhibits transcription by interfering with transcription initiation. ● DNA methylation reduces the binding affinity of sequence–specific transcription factors. ● Methylation–dependent, sequence–specific DNA–binding proteins, such as MDBP may act as transcriptional repressors.
组蛋白修饰 组蛋白修饰(histone modification)是表观遗传研究的重要内容。 组蛋白的 N端是不稳定的、无一定组织的亚单位,其延伸至核小体以外,会受到不同的化学修饰,这种修饰往往与基因的表达调控密切相关。 被组蛋白覆盖的基因如果要表达,首先要改变组蛋白的修饰状态,使其与DNA的结合由紧变松,这样靶基因才能与转录复合物相互作用。因此,组蛋白是重要的染色体结构维持单元和基因表达的负控制因子。
Histone modifications— including acetylation, methylation and phosphorylation — are important in transcriptional regulation and many are stably maintained during cell division, although the mechanism for this epigenetic inheritance is not yet well understood.Proteins that mediate these modifications are often associated within the same complexes as those that regulate DNA methylation.
Histone Modifications • Covalent modification of histones: • Acetylation of lysines • Methylation of lysines and arginines • Phosphorylations of serines and threonines
Histones •5 types: H2A, H2B (slightly lys rich), H3, H4 (arg rich) H1 (lys rich). All relatively small proteins. • Per 200 bp of DNA: 2 molecules each of H2A, H2B, H3, H4 and one molecule of H1.
Histone Acetylation Acetylation of the lysine residues at the N terminus of histone proteins removes positive charges, thereby reducing the affinity between Histones and DNA. This makes RNA polymerase and transcription factors easier to access the promoter region. Therefore, in most cases, histone acetylation enhances transcription while histone deacetylation represses transcription
Transcription process and its regulation by histone modification
Histone acetylation and cancer In acute promyelocytic leukaemia: The oncoprotein produced by the fusion of the PML (promyelocytic leukaemia) gene and the retinoic acid receptor a gene appears to suppress the transcription of specific genes through the recruitment of HDACs. Thus the cancer cell is unable to undergo differentiation, leading to excessive proliferation. Similar phenomena: retinoic acid receptor a–PLZF (promyelocytic leukaemia zinc finger protein)fusion, AML1 (acute myelocytic leukaemia protein 1)–ETO fusion, and also in theMyc/Mad/Max signalling pathway involved in solid malignancies.
It is clear that HDAC enzymes seldom operate alone. Many proteins, with various functions such as recruitment, co-repression or chromatin remodelling, are involved in forming a complex that results in the repressor complex.
There are two protein families with HDAC activity: the recently discovered SIR2 family of NAD+-dependent HDACs and the classical HDAC family. Members of the classical HDAC family fall into two different phylogenetic classes - class I and class II The class I HDACs (HDAC1, 2, 3 and 8) are most closely related to the yeast(Saccharomyces cerevisiae) transcriptional regulator RPD3. Class II HDACs (HDAC4, 5, 6, 7, 9 and 10) share domains with similarity to HDA1, another deacetylase found in yeast . Recently a new member of the HDAC family has been identified, HDAC11
A wide variety of processes are associated with the inhibition of HDACs,such as apoptosis, necrosis, differentiation, inhibition of proliferation and cytostasis. Currently, many efforts are being made to expand our knowledge of the HDACs and to develop potent and stable HDACi.
RESPONSIVE GENES By studying the effects of HDACi on the expression of various genes and their regulatory pathways, a more detailed picture will emerge of how the inhibition of HDACs, combined with the HDAC expression profile of that cell, ultimately determines the fate of the cell.
染色质重塑 • 染色质重塑(chromatin remodeling)是一个重要的表观遗传学机制。 • 染色质重塑是由染色质重塑复合物介导的一系列以染色质上核小体变化为基本特征的生物学过程。 • 组蛋白尾巴的化学修饰(乙酰化、甲基化及磷酸化等)可以改变染色质结构,从而影响邻近基因的活性。
Chromatin-Level Regulation of Gene Expression Garfinkel and Ruden Nutrition:20:56-62, 2004
MicroRNA • miRNA是近年来生命科学领域的研究热点,是一组生物体基因组编码的内源性非编码小RNA。 • miRNA主要采用降解靶mRNA和抑制靶mRNA的翻译两种作用方式在转录后水平调控基因表达。 • 降解靶mRNA的方式与siRNA的作用方式相似,直接作用于靶mRNA,直接导致mRNA表达水平下降。 • 但绝大多数哺乳动物细胞中的miRNAs 并不导致靶mRNA的降解,而是通过与靶mRNA的3’端非翻译区(UTR)不完全匹配结合,抑制mRNA翻译成蛋白质,使靶基因的蛋白质表达水平下降。
A primary transcript (pri-miRNA) is first processed into a stem-loop structure about 60–80 nt (pre-miRNA) by the RNase endonuclease Drosha .pre-miRNAs are exported to the cytoplasm by Exportin-5. Dicer cleaves the hairpin, releasing a miRNA:-miRNA duplex, which has a two base overhang at both 30 ends. The strands of this duplex separate and release a 21–25 nt mature miRNA.
http://microrna.sanger.ac.uk/sequences/search.shtml 利用公共数据库寻找某个miRNA的target基因
http://cbio.mskcc.org/cgi-bin/mirnaviewer/mirnaviewer.pl 利用公共数据库还能找被几个miRNA的共同调节的target基因
miRNA与肿瘤发生的关系存在两种可能的模式 [Caldas, et al.(Nature Medicine 2005)] : 1、若miRNA表达上调,其对应抑癌基因表达下调时,则可能导致肿 瘤发生; 2、若miRNA表达下调,其对应癌基因表达上调时,同样可能导致肿 瘤发生。
miRNA的 甲基化修饰
miRNA芯片是目前筛选和研究miRNA调控的高通量手段miRNA芯片是目前筛选和研究miRNA调控的高通量手段
思考题: 1.何谓表观遗传学? 2.表观遗传学的主要研究内容是什么? 3.如何运用表观遗传策略对肿瘤进行诊断与治疗?