1 / 36

Chapter 6: Stacks

Chapter 6: Stacks. Data Abstraction & Problem Solving with C++ Fifth Edition by Frank M. Carrano. Developing an ADT During the Design of a Solution. ADT stack operations Create an empty stack Destroy a stack Determine whether a stack is empty Add a new item to the stack

edric
Download Presentation

Chapter 6: Stacks

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 6: Stacks Data Abstraction & Problem Solving withC++ Fifth Edition by Frank M. Carrano

  2. Developing an ADT During the Design of a Solution • ADT stack operations • Create an empty stack • Destroy a stack • Determine whether a stack is empty • Add a new item to the stack • Remove the item that was added most recently • Retrieve the item that was added most recently

  3. Developing an ADT During the Design of a Solution • A stack • Last-in, first-out (LIFO) property • The last item placed on the stack will be the first item removed • Analogy • A stack of dishes in a cafeteria Figure 6-1 Stack of cafeteria dishes

  4. Refining the Definition of the ADT Stack • Operation Contract for the ADT Stack isEmpty():boolean {query} push(in newItem:StackItemType) throw StackException pop() throw StackException pop(out stackTop:StackItemType) throw StackException getTop(out stackTop:StackItemType) {query} throw StackException

  5. Checking for Balanced Braces, Parenthesis and Brackets • A stack can be used to verify whether a program contains balanced braces • An example of balanced braces abc{defg[ijk](l{mn})op}qr • An example of unbalanced braces abc{def]}[gh{ij(kl}m) though you have the same number of open and closing types

  6. Checking for Balanced Braces • Requirements for balanced braces • Each time you encounter a “}])”, it should match the previously encountered “{[(” • When you reach the end of the string, you have matched each

  7. In-class exercise:Write the pseudocode for the balancing parenthesis problem

  8. Recognizing Strings in a Language • L = {w$w’ : w is a possibly empty string of characters other than $, w’ = reverse(w) } • A solution using a stack • Traverse the first half of the string, pushing each character onto a stack • Once you reach the $, for each character in the second half of the string, match a popped character off the stack

  9. Implementations of the ADT Stack • The ADT stack can be implemented using • An array • A linked list • The ADT list • All three implementations use a StackException class to handle possible exceptions

  10. An Array-Based Implementation of the ADT Stack • Private data fields • An array of items of type StackItemType • The index top to the top item • Compiler-generated destructor and copy constructor Figure 6-5 An array-based implementation

  11. /** @file StackA.h */ #include "StackException.h" const int MAX_STACK = maximum-size-of-stack; typedef desired-type-of-stack-item StackItemType; / * ADT stack - Array-based implementation. */ class Stack {public: Stack(); bool isEmpty() const; void push(const StackItemType& newItem) ; void pop(); void pop(StackItemType& stackTop) ; void getTop(StackItemType& stackTop) const;

  12. private: /** Array of stack items */ StackItemType items[MAX_STACK]; /** Index to top of stack */ int top; }; // end Stack

  13. /** @file StackA.cpp */ #include "StackA.h" // Stack class specification file Stack::Stack() : top(-1) { } // end default constructor bool Stack::isEmpty() const { return top < 0; } // end isEmpty void Stack::push(const StackItemType& newItem) { // if stack has no more room for another item if (top >= MAX_STACK-1) cout << "StackException: stack full on push"; else { ++top; items[top] = newItem; } // end if } // end push

  14. void Stack::pop() { if (isEmpty()) cout << “StackException: stack empty on pop"; else --top; // stack is not empty; pop top } // end pop void Stack::pop(StackItemType& stackTop) { if (isEmpty()) cout << "StackException: stack empty on pop"; else { // stack is not empty; retrieve top stackTop = items[top]; --top; // pop top } // end if } // end pop file.

  15. void Stack::getTop(StackItemType& stackTop) const { if (isEmpty()) cout << "StackException: stack empty "; else // stack is not empty; retrieve top stackTop = items[top]; } // end getTop // End of implementation

  16. #include <iostream> #include "StackA.h" using namespace std; int main() { StackItemType anItem; Stack aStack; cin >> anItem; // read an item aStack.push(anItem); // push it onto stack return 0; } // end main

  17. A Pointer-Based Implementation of the ADT Stack • A pointer-based implementation • Enables the stack to grow and shrink dynamically • topPtr is a pointer to the head of a linked list of items • A copy constructor and destructor must be supplied Figure 6-6A pointer-based implementation

  18. /** @file StackP.h */ #include "StackException.h" typedef desired-type-of-stack-item StackItemType; /** ADT stack - Pointer-based implementation. */ class Stack {public: Stack(); Stack(const Stack& aStack); ~Stack(); bool isEmpty() const; void push(const StackItemType& newItem) throw(StackException); void pop() throw(StackException); void pop(StackItemType& stackTop) throw(StackException); void getTop(StackItemType& stackTop) const throw(StackException); Pointer implementation of a stack

  19. private: /** A node on the stack. */ struct StackNode { /** A data item on the stack. */ StackItemType item; /** Pointer to next node. */ StackNode *next; }; // end StackNode /** Pointer to first node in the stack. */ StackNode *topPtr; }; // end Stack // End of header file.

  20. /** @file StackP.cpp */ #include <cstddef> // for NULL #include <new> // for bad_alloc #include "StackP.h" // header file using namespace std; Stack::Stack() : topPtr(NULL) { } // end default constructor Stack::Stack(const Stack& aStack) { if (aStack.topPtr == NULL) topPtr = NULL; // original list is empty else

  21. { // copy first node topPtr = new StackNode; topPtr->item = aStack.topPtr->item; // copy rest of list StackNode *newPtr = topPtr; // new list pointer for (StackNode *origPtr = aStack.topPtr->next; origPtr != NULL; origPtr = origPtr->next) { newPtr->next = new StackNode; newPtr = newPtr->next; newPtr->item = origPtr->item; } // end for newPtr->next = NULL; } // end if } // end copy constructor

  22. Stack::~Stack() { // pop until stack is empty while (!isEmpty()) pop(); // Assertion: topPtr == NULL } // end destructor bool Stack::isEmpty() const { return topPtr == NULL; } // end isEmpty

  23. void Stack::push(const StackItemType& newItem) throw(StackException) { // create a new node try { StackNode *newPtr = new StackNode; // set data portion of new node newPtr->item = newItem; // insert the new node newPtr->next = topPtr; topPtr = newPtr; } catch (bad_alloc e) { throw StackException( "StackException: push cannot allocate memory."); } // try } // end push

  24. void Stack::pop() throw(StackException) { if (isEmpty()) throw StackException("StackException: stack empty "); else { // stack is not empty; delete top StackNode *temp = topPtr; topPtr = topPtr->next; // return deleted node to system temp->next = NULL; // safeguard delete temp; } // end if } // end pop

  25. void Stack::pop(StackItemType& stackTop) throw(StackException) { if (isEmpty()) throw StackException("StackException: stack empty "); else { // stack is not empty; retrieve and delete top stackTop = topPtr->item; StackNode *temp = topPtr; topPtr = topPtr->next; // return deleted node to system temp->next = NULL; // safeguard delete temp; } // end if } // end pop

  26. void Stack::getTop(StackItemType& stackTop) const throw(StackException) { if (isEmpty()) throw StackException("StackException: stack empty "); else // stack is not empty; retrieve top stackTop = topPtr->item; } // end getTop // End of implementation file.

  27. Comparing Implementations • Fixed size versus dynamic size • A statically allocated array-based implementation • Fixed-size stack that can get full • Prevents the push operation from adding an item to the stack, if the array is full • A dynamically allocated array-based implementation or a pointer-based implementation • No size restriction on the stack

  28. Comparing Implementations • A pointer-based implementation vs. one that uses a pointer-based implementation of the ADT list • Pointer-based implementation is more efficient • ADT list approach reuses an already implemented class • Much simpler to write • Saves programming time

  29. The STL Class stack • Provides a size function • Has two data type parameters • T, the data type for the stack items • Container, the container class that the STL uses in its implementation of the stack • Uses the keyword explicit in the constructor’s declaration to prevent use of the assignment operator to invoke the constructor

  30. Application: Algebraic Expressions • When the ADT stack is used to solve a problem, the use of the ADT’s operations should not depend on its implementation • To evaluate an infix expression • Convert the infix expression to postfix form • Evaluate the postfix expression

  31. Evaluating Postfix Expressions • A postfix calculator • When an operand is entered, the calculator • Pushes it onto a stack • When an operator is entered, the calculator • Pops the stack twice • Applies the operation to the values popped • Pushes the result of the operation onto the stack

  32. The STL stack Container • The STL stack container may be implemented as a vector, a list, or a deque (which you will learn about later in this chapter). • Because the stack container is used to adapt these other containers, it is often referred to as a container adapter.

  33. The STL stack Container • Here are examples of how to declare a stack of ints, implemented as a vector, a list, and a deque. stack< int, vector<int> > iStack;//Vector stackstack< int, list<int> > iStack; // List stackstack< int > iStack; // Default – deque stack

  34. 18.3 The STL stack Container • See the STL documentation that describes many of the stack container’s member functions.

  35. // This program demonstrates the STL stack// container adapter.#include <iostream>#include <vector>#include <stack>using namespace std;void main(void){ int x; stack< int, vector<int> > iStack;for (x = 2; x < 8; x += 2) { cout << "Pushing " << x << endl; iStack.push(x); }

  36. cout << "The size of the stack is "; cout << iStack.size() << endl; for (x = 2; x < 8; x += 2) { cout << "Popping " << iStack.top() << endl; iStack.pop(); }}Program OutputPushing 2Pushing 4Pushing 6The size of the stack is 3Popping 6Popping 4Popping 2

More Related