220 likes | 455 Views
NN2012. FARCOS Femtoscope a ncillary Array for Correlations & S pectroscopy. Why need for a new project for the reaction program at INFN-CT and LNS? Farcos and present status (mechanics, electronics). G. Verde, INFN-Catania
E N D
NN2012 FARCOSFemtoscopeancillary Array for Correlations & Spectroscopy • Why need for a new project for the reaction program at INFN-CT and LNS? • Farcos and present status (mechanics, electronics) G. Verde, INFN-Catania EXOCHIM collaboration, INFN(LNS-CT-MI-NA), Un. Messina, GANIL, GEM-UHU, open collaboration
Physicstopics • Heavy-ioncollisions(stable and RI beams) • Dynamics (HBT, Femtoscopy) • Low& Intermediate energies: fusion, fission, DIC, Symmetryenergy, Emission time-scales, probes of reactionmodels • Multi-particle correlation spectroscopy (MPCS) cluster states • Direct reactions with RIBs • Inverse and direct kinematics • Nuclei close to driplines
Beam TARGET 30° 176° 1° 1m Chimera: isospin and dynamics 1192 Si-CsI(Tl) Telescopes 18 rings in the range 1° ≤ θ ≤ 30° 17 rings in the range 30° ≤ θ ≤ 176° (sphere) High granularity and efficiency up to 94% 4π • Z identification up to beam charge (ΔE-E) • Z and A identification by ΔE-E up to Z≤ 9 • Z and A identification in CsI up to Z ≤ 4 • Mass identification with low energy threshold (< 0.3 MeV/u) by ToF • Z identification for particles stopping in Si (pulse shape)
FARCOS TELESCOPE – phase 1 4 CsI(Tl) crystals (3rd stage) DSSSD 1500 μm (2nd stage) Assembly cluster DSSSD 300 μm (1st stage) 132 channels by each cluster Based on (62x64x64 mm3) clusters 1square(0.3x62x62mm3)DSSSD 32+32 strips 1square (1.5x62x62mm3)DSSSD 32+32 strips 460x32x32 mm3CsI(Tl) crystals Fullyreconfigurable(more Si layers, neutrondetection, …)
Relevance of angular resolution Deuteron-Alpha correlations Final-state interactions + Coincidence pairs Y12 (q) + Uncorrelated pairs q (MeV/c) Nuclear FSI: correlation at q=42 and 84 MeV/c Coulomb FSI: anti-correlation at small q values 1+R(q) 6Li High angular resolution required: Low q and resonances deuteron-alpha q (MeV/c)
Multi-particle decay spectroscopy Using heavy-ion collisions as an explorative spectroscopy tool: several unbound species in one single experiment Dedicated RIB experiment p Not only EoS… α 10C* α p α α 12C* p α Expansion 8B* 5Li* 7Be α p
BC states in 12C, 16O, etc.???? A. Raduta et al., Phys. Lett. B705, 65, 2011 40Ca+12C, E/A=25 MeV @ Chimera G.S. of 12C 3 alpha Γ~ 7.5% direct three-body decay (BC?) …but more recently… J. Manfredi et al., PRC85, 2012!! Γ<0.5% direct three body decay! High resolution measurements (HiRA, pixelated detectors) can lead to totally different results…
FARCOS detectors • Double-Sided Silicon Strip Detectors • 300 μm and 1500 μm • Capton cable and 2x32pin connectors • Highly homogenous CsI(Tl) crystals • Wrapping: 0.12mm thick white reflector +50μm aluminized Mylar. • 2μm thick aluminized Mylar window at the entrance (0.29 g/cm2) • Read-out by photo-diodes (300μm)
Single cluster DSSSD 300 μm (1st stage) DSSSD 1500 μm (2nd stage) photodiodes 4 CsI(Tl) crystals (3rd stage) Mounting allows for addition of other detectors and neutron “transparency”
First prototype modules built 4 clusters expected to be ready by the end of 2012 March-April 2012
Geometric flexibility Cross geometry centered on the beam axis (10 clusters) Wall geometry placed at 45° from beam axis (9 clusters) beam 45° beam Transportability Modularity
Geometries Farcos Farcos Chimera • Correlations in central collisions (cluster states, HBT, Asy-EoS) • Correlations in Quasi-Projectile breakup • Spectroscopy with radioactive beams Chimera rings
Experiments with exotic beams Ex: Primary beam: 20Ne E/A=45 MeV/A Production target: 9Be (500 mm) Fragments transported and tagged event-by-event by E-ToF Projectile fragmentation beams Di-proton decay from excited 18Ne states G. Raciti et al., PRL (2008) DSSD Tagging detector
Beam production Primary beam : 18O at 55 MeV/A, I~5x1011 part/sec Production target: 9Be (1.5 mm) G. Cardella et al. DE (MeV) 15B Bρ=2.71 Tm 10Be 12Be 17C DE (MeV) I (hz) 14Be 4 11Li20 9Li40 8He80 optimized 6He 980 Bρ=2.97 Tm 16C 9Li 6He 13B 12Be T (ns) 10Be 9Li 11Be Bρ=3.8 Tm 6He 7Li DE (MeV) T (ns) I (kHz) 16C 40 17C 4 13B 23 11Be 6 (optimized) 10Be 21 8Li 11 Energies: ~ 40-50 MeV/A Momentum window DP/P <1% I (kHz) 15B 0.3 14B 0.9 12Be 1.5 optimized 9Li2.0 8Li 1.6 14Be 11Li 8He 6He T (ns)
Direct reactions with exoticbeams FRIBS exotic beams 34Ar + p 33Ar + d d 34Ar Farcos (33Ar residue) 33Ar Chimera (d) Day-1 experiment at LNS
Direct reactions in inverse kinematics • Heavy residue (forward): Magnex • Ligh charged particles: Farcos • Neutron: EDEN, others Eden neutron array (Orsay) already installed at LNS Farcos Also for Esym(ρ) experiments
Compact preamplifiers – Phase 1 32 channels Hybrid charge preamplifiers in a volume of about 8cm x 10cm x 2mmm • Low power consumption: ~750 mWpwe 32 channels (simplify cooling operations) • Rise-Time (pulser): ~ 3-7nsec for Cinput=0-100pF • Energy resolution (pulser) ~ 4.3 KeVforCinput=0-100pF • Available with several sensitivities (5, 10, 45, 100 mV/MeV…) INFN, Milano – C. Boiano, R. Bassini
First test with beams – July 2012 Rochester Chimera sphere FARCOS GANIL p,α + p, d, C E/A=40, 80 MeV Transfer reactions • CsI(Tl) uniformity • Silicon resolution • Integrating DAQ into Chimera system
Electronicsplans for phase 2 • Pre-amplifiers with multiple gains and large dynamic range (MeV to GeV) • Pulse-shape capabilities • Low identification thresholds for low energy experiments (Spiral2, Spes) • Digitalization of detector signals • Update possibilities • Solid angle increase • Coupling to different detectors (in different laboratories)
Neutron detection • “Transparency” of materials and electronics boards to incoming neutrons • Stacks of Silicon+Plastic for neutron detection – under study at the moment… Electronics P P P P P CsI(Tl) ….. CsI(Tl) DSSSD1 DSSSD2 Si
FARCOS-collaboration PARTICIPANTS L. Acosta1, T. Minniti2,3, G. Cardella4, G. Verde4, F. Amorini1, A. Anzalone1, L. Auditore2,3, M. Buscemi1,5, A. Chbihi6, E. De Filippo4, L. Francalanza1,5, E. Geraci4,5, C. Guazzoni7,8, E. La Guidara4,9, G. Lanzalone1,10, I. Lombardo1,5, D. Loria2,3, I. Martel11, E.V. Pagano1,5, A. Pagano4, M. Papa4, S. Pirrone4, G. Politi4,5, F. Porto1,5, L. Quattrocchi2,3, F. Rizzo1,5, P. Russotto1,5, A.M. Sánchez-Benítez11, J.A. Dueñas11, R. Berjillos11, S. Santoro2,3, A. Trifirò2,3, M. Trimachi2,3, M. Vigilante13,14. INSTITUTIONS 1INFN-LNS; 2INFN- Gruppo Collegato di Messina; 3Dip. Fis. Univ. Messina; 4INFN- Sez. Catania; 5Dip. Fis. e Astr. Univ. Catania; 6GANIL, CEA-IN2P3-CNRS, Caen, France; 7INFN- Sez. Milano; 8Dip. Fis. Univ. Milano; 9CSFNSM, Catania; 10Univ. KORE, Enna, Italy; 11Univ. de Huelva, Spain; 13INFN- Sez. Napoli; 14Dip. Fis. Univ. Napoli.