1 / 31

Confindustria Emilia-Romagna

Confindustria Emilia-Romagna. “Low cost sorbent for reducing mercury emissions” SOREME Project 12 month meeting Pisa, 27 January 2014. Life+ 11 ENV/IT/109-SOREME . Role of Confindustria ER in SOREME.

efrat
Download Presentation

Confindustria Emilia-Romagna

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Confindustria Emilia-Romagna “Low cost sorbent for reducing mercury emissions” SOREME Project 12 month meeting Pisa, 27 January 2014 Life+ 11 ENV/IT/109-SOREME

  2. Role of Confindustria ER in SOREME • CONER represents companies to test the SOREME sorbent at semi-industrial and industrial level over different industrial cycles • CONER is responsible for implementation of the following actions: • Implementation actions (B) • B.4 - Demonstration of the innovative project mercury sorbent at semi-industrial level • B.5 - Demonstration of the innovative project mercury sorbent at industrial level • Monitoring of the impact of the project actions (C) • C.4 – Feedback on SOREME mercury sorbent use • C.5 - Demonstration of environmental-technical-socio-economic viability • CONER is also involved : • Communication and dissemination actions (D) • Project management and monitoring of the project progress (E)

  3. Role of Confindustria ER in SOREME: timetable started In running

  4. Focus on demonstration of the SOREME sorbent at semi-industrial/indusriallevel (action B.4-B.5) • Main activities and results: • Survey and selection of Industries available to host the demonstration of SOREME sorbent ( with the involvement of local industrial associations )  side effect: dissemination and promotional events! • Identification of scenarios for demonstration andassessment of technological and regulatory issues. • Identification of Industrial plans where to carry out the demonstrationactivities at semi industrial and industrial level (gas emission) – tradeoff between complexity of industrial plans, regulatory issues, industry internal policy & authorizations, available budget and timing. • Identification of a specific external assistance (Klymasrl) to design customized demonstration facility (SOREME DEMONSTRATION FACILITY) to be integrated within the specific industrial plan; • Identification of sub-components providers (consumables) required to assembly the Soreme Demonstration Facility on the base of “best value for money” and timing. • Times required to complete B.4 – aprox. 5/6 wks … despite the delay the industrial demonstration is estimated to be faster (A draft video has been prepared and will be integrated as activities move further on) • Start regulatory assessment on technical-economic-enviromental viability (C.5 action) • Preliminary feedback on mercury sorbent use (C.4 action) Description of the work

  5. Description of the work Surveyand selection of enterprises in Emilia Romagna Regionavailable to collaborate in the semi-industrial testing of SOREME sorbent. Differenttypes of enterprisesoperating in the field of waste management havebeenidentified: Large sizeenterprises with large waste management plants SMEsspecialized in wasteand energy management SME specialized in water treatments SMEsspecialized in servicesin thefield of eco-innovation Laboratoriesand small companies in charge of certification and environmentalassessment

  6. Scenarios for SOREME Demonstration and assessment of related problems • Main scenarios • Gas treatment from combustion plants : Crematory, Urban Waste, Medical Waste • Water treatment from waste water plants • Some constraints and limiting factors • Heterogeneous scenario with highly customized industrial plans (not possible to define a general purpose strategy which works equally good for all the scenario) • Timing, available budget, regulation and internal authorization paths. • Strategy: • The demonstration activities has required clearly-identified specific plan (with its own specific technological and regulatory constrains). • Focus the demonstration activities on the more significant scenarios (gas emissions) the one with greater economic and environmental impacts but the one with more complexity in terms of plan engineering and regulations  from here the other scenario will be much more easy and chip! Description of the work

  7. Description of the work SOREME Demonstration on GAS EMISSIONS FROM COMBUSTION PLANTS SMEs plants have been selected to carry out the semi-industrial tests. Economic reasons. Large plants have to stop the daily activities with significant important financial loss (order of magnitude of hundred-thousand €/h) Time reasons. Large enterprises require longer internal procedure to release authorizations to build up a pilot plant Huge flows = Huge amount of sorbent Uncertainty related to a clear qualification of SOREME sorbent. Potential Technological incompatibility with existing plants/machineries. Regulatory framework. Control of national and regional authorities (ARPA) on the activities which may lie out of the officially authorized ones (HERA: public-private partnership) Security constraints. - This inconvenience may be solved one the SOREME sorbent will be qualified ( potentially included in future activities, if some budget will be left)

  8. SOREME Ecosystems (sites and suppliers) Cervignano del Friuli Bergamo (out of ER region) sites BresciaFoggiaModenaParmaPiacenzaRiminiSpinea Dissemination activities Dissemination activities Dissemination activities

  9. Description of the plants INCINERATION PLANTS – Modena Click to see

  10. Technical information and Design Constraints • Fisicalsizing of soremesorbent: Two different SOREME Sorbents available (in Granular vs Pellets) with different adsorption capability • Industrial constraints – the semi-industrial and industrial demonstrationsrequire a welldesignedprocess to avoid to perturb the industrial planduringcurrentoperations. • Processconstraints • Identifysuitableplaces to interact with the industrial plan to manage the gas emissions and respect the currentregulations (enviromental and security regulations) • Gas emissiontemperturerelativenly high • Dusts with differentsizing are presentthatmayinterfere with the demonstrationactivities • The emissionflowsafterbeingtaken from the plan for the demonstrationactivity must be reintroduced in the plants to be subjected to well-regulatedfiltrationprocedures

  11. Technical information – Design Constraints Physical Characteristics of the SOREME sorbent and design of filters • Granular SOREME Sorbent • non homogeneous, with variable dimensions (from fine 1 mm up to 10 mm in size) • The evaluation of the sorbent has allowed to carry out a demonstration activities using • a fixed bed filters • controlled emission flow speed (low regime) • precaution to avoid dragging fine dusts in the sorbent itselfand in the industrial plants. • Firsts Feedback on usage • It will be recommendable to carry out an analysis of the particle size distribution as it influences the final necessary amount of SOREME Sorbent and the related evaluation of its efficiency

  12. Technical information – Design Constraints Physical Characteristics of the SOREME sorbent and design of filters • Granular SOREME Pellets • produced using a blend of Sorbent (70%) and bentonite (30%) and with a variable diameter of 4-6 mm and length of 5-25 mm. • The specific weight is about 0,5 Kg/L. • Firsts Feedback on usage • As the sorbent efficiency depends on the available surfaces bentonite may prevent gas emission to properly interact with the SOREME activated sorbent reducing its efficiency. General suggestions to improve SOREME sorbent • For the preliminary evaluation SOREME sorbent both Pellets and Granular can be treated under micronized process conditions to improve its efficiency • Some preliminary contcact has been establised with LB-Technology(MO) which can eventually improve the actual

  13. The SoremeDemonstrationFacility Industrial Treatment Stages to satisfy environmental regulations on emissions Industrial gas flow pipeline (containing hot exhausts + powders) (A draft video has been prepared and will be integrated as activities move further on)

  14. The SoremeDemonstrationFacility The SOREME demonstration facility comprises 4 main treatment stages Stage 4 – Adsorption Stage 1 – pre-condition the hot emission hot exhausts + powders Stage 2 – Filtration Stage 3 – pressurizing Fresh air

  15. The SoremeDemonstrationFacility First stage– precondition the hot emission Capture and control a suitable amount of hot exhausts from the main gas pipeline Pre-treat the heat gas to lower the temperature by an active heat exchanger The stage is made by Control valves Temperature and pression sensors Flexible (special) pipelines to handle with hot exhaust Flexible pipelines to handle air Specially-designed Heat exchanger Air Pump Hot air High temperature exhausts\powders Fresh air Low temperature exhausts powders to the second stage

  16. The SoremeDemonstrationFacility Second stage – Purification Capture and control the particles dusts and powders in the exhausts 2. A second lowering stage for temperature controls The stage is made by Control valves Temperature and pression sensors Flexible pipelines to handle pre treated emission Specially-designed multiple – filtration systems Exhausts from the 1st stage containing powders

  17. The SoremeDemonstrationFacility Third and fourth stage – Presurizing/Adsorption 1. Control the interaction of Soreme Sorbent with pre-treated gas emission 2. Control the gas pressure after the Sorbent-Gas interaction 3. Re-insert the “soreme”-purified gas in the industrial pipelines 2. To protect the industrial plan from unexpected accidents The stage is made by Control valves Temperature and pression sensors Flexible pipelines to handle pre treated emission Specially-designed – pressurizing systems SOREME specially-designed filter. Protective stage Exposure conditions – sizing the process The flow rate of gas to be tested has been fixed around 20÷70 Nm3/hour, with aspiration system for exhausted gases able to be tuned within the range also my means on a by-pass discharge directed to the mainstream.

  18. Technical information – Design Constraints Adsorption Stage On the basis of the SOREME physical characteristics, a filter based on a fixed bed system has been specially designed, using ascending fluxes on the gas to be detected. Physically, the system is composed by a cylindrical matallic bulk body and an internal cavity able to host interchangeable drums, varying in diameter and length, used to host SOREME sorbent (in all its shapes) and arranged on the same support within the filter. The system has been designed in this way in order to be a compromise between the operating conditions during the industrial demonstrations ReconfigurableSoremeFilter Granular Soreme PelletsSoreme

  19. Definition of the dimensions of the filter • Dosage of sorbent has been determined on the basis of the results and outcome of tests carried out in the CNR Laboratories in Pisa. • The reference data is of 0.25g/Nm3, which is then correlated with the average value available in literature (estimated as 0.324g/Nm3). • Geometric dimensions and other parameters have been fixed according to the availability of materials and devices in the market to be used in the construction of the device, taking into account also: cost/benefits ratio, rapid availability and rapid realization of the device. • Flow surface has been fixed to 0.056m2, corresponding to a ring with the diameter of 0.266m • The height of the filtering bed has been fixed to 1 m, in relation to the amount of sorbent to be tested in the industrial phase (i.e. 0.056m3).

  20. Timing & Conclusions • Times required to complete B.4 – aprox. 5/6 wks … despite the delay the industrial demonstration is estimated to be faster • What is missing: • The formal authorization of the industrial plan • Most of the components are special parts, specially designed and customized according to soreme sorbent specifications and usage sites • Specialized suppliers ( most SMEs) and relatively expensive components and Specialized system integrators. • Once each parts will be available, a “calibration” phase is forseen before moving the SOREME demonstrator facility to the Industrial Plan • Trials will be done at semi-industrial and industrial levels accordingly with the results, the timing and the budget availability • After exposure the SoremeDemostrtors filters will be sent to CNR for analysis. For that it is necessary to define and share a PROTOCOL. • The tecnico-economic viability requires of soreme sorbent as viable product requires also to face with some regulatory issues related to waste management and to by-product valorization

  21. Thank you for your attention

  22. … contact Danilo Mascolo Chief Innovation & Technology Transfer Officer Via Barberia13 Bologna

  23. Confindustria Emilia-Romagna “Low cost sorbent for reducing mercury emissions “ SOREME Project 12 month meeting Pisa, 27 January 2014 Life+ 11 ENV/IT/109-SOREME

  24. La normativa sull’incremento e coincenerimento di rifiuti Oggetto di revisione nell’ambito del DLGS di recepimento della Direttiva 2010/75/UE relativa alle emissioni industriali Emissioni in area, acqua, suolo Valori limiti Metodi campionamento, analisi e valutazione inquinanti derivanti dagli impianti Criteri e norme tecniche sulle caratteristiche costruttive e funzionali degli impianti Definizione di impianti di incenerimento: qualsiasi unità e attrezzatura tecnica, fissa o mobile, destinata al trattamento termico di rifiuti con o senza recupero del calore prodotto dalla combustione, attraverso l’incenerimento mediante ossidazione dei rifiuti, nonché altri processi di trattamento termico, quali ad esempio la pirolisi, la gassificazione ed il processo al plasma, a condizione che le sostanze risultanti dal trattamento siano successivamente incenerite. Nella nozione di impianto di incenerimento si intendono compresi: il sito e tutte le linee di incenerimento, nonché i luoghi di ricezione dei rifiuti in ingresso allo stabilimento, i luoghi di stoccaggio, le installazioni di pretrattamento in loco, i sistemi di alimentazione in rifiuti, in combustibile ausiliario e in aria di combustione, le caldaie, le installazioni di trattamento o stoccaggio in loco dei residui e delle acque reflue, i camini, i dispositivi ed i sistemi di controllo delle operazioni di incenerimento, di registrazione e monitoraggio delle condizioni di incenerimento. Se per il trattamento termico dei rifiuti sono utilizzati processi diversi dall’ossidazione, quali ad esempio la pirolisi, la gassificazione o il processo al plasma, l’impianto di incenerimento dei rifiuti include sia il processo di trattamento termico che il successivo processo di incenerimento. Processo termico  ossidazione Processo di incremento  paralisi, gassificazione, processo al plasma

  25. Definizione di impianto di coincenerimento Produzione di energia o materiali attraverso la combustione di rifiuti • qualsiasi unità tecnica, fissa o mobile, la cui funzione principale consiste nella produzione di energia o di materiali e che utilizza rifiuti come combustibile normale o accessorio o in cui i rifiuti sono sottoposti a trattamento termico ai fini dello smaltimento, mediante ossidazione dei rifiuti, nonché altri processi di trattamento termico, quali ad esempio la pirolisi, la gassificazione ed il processo al plasma, a condizione che le sostanze risultanti dal trattamento siano successivamente incenerite. Nella nozione di impianto di coincenerimento si intendono compresi: il sito e l'intero impianto, compresi le linee di coincenerimento, la ricezione dei rifiuti in ingresso allo stabilimento e lo stoccaggio, le installazioni di pretrattamento in loco, i sistemi di alimentazione dei rifiuti, del combustibile ausiliario e dell'aria di combustione, i generatori di calore, le apparecchiature di trattamento, movimentazione e stoccaggio in loco delle acque reflue e dei rifiuti risultanti dal processo di coincenerimento, le apparecchiature di trattamento degli effluenti gassosi, i camini, i dispositivi ed i sistemi di controllo delle varie operazioni e di registrazione e monitoraggio delle condizioni di coincenerimento. Se per il trattamento termico dei rifiuti sono utilizzati processi diversi dall’ossidazione, quali ad esempio la pirolisi, la gassificazione o il processo al plasma, l’impianto di coincenerimento dei rifiuti include sia il processo di trattamento termico che il successivo processo di coincenerimento. Se il coincenerimento dei rifiuti avviene in modo che la funzione principale dell'impianto non consista nella produzione di energia o di materiali, bensì nel trattamento termico ai fini dello smaltimento dei rifiuti, l'impianto è considerato un impianto di incenerimento.

  26. Definizione di camino  struttura con una o più canne di scarico che fungono da condotto per la fuoriuscita del gas prodotto • Residui di lavorazione degli impianti • Scorie, ceneri pesanti, solidi di reazione derivanti dal trattamento del gas • Fanghi di risulta delle acque reflue • Catalizzatori esauriti; carbone attivo esaurito SONO TUTTI RIFIUTI, ALCUNI ANCHE PERICOLOSI • Impianti soggetti ad autorizzazione • Alcuni sono in IPPC (IntegratedPollutionPreventionControl)-All. VIII parte II p. 1.1, 5.2 D.Lgs 152/06 VERIFICARE • Altri sono sottoposti ad autorizzazione unica in materia di rifiuti 8Art. 208 D.Lgs 152/06)

  27. CONTENUTI DELLA DOMANDA • La domanda per autorizzazione deve contenere: • Garanzie che l’impianto è costruito e gestito secondo le BAT ( Best AvailablesTecniques) • Che il calore generato e recuperato per produzione di vapore o energia CONTENUTI DELL’AUTORIZZAZIONE • Elenco di tutti i rifiuti che si possono trattare nell’impianto e relative quantità • Potenza termica dell’impianto • Procedure e frequenze di comparamento per controllo delle emissioni nonché punti di comparamento e localizzazione • Modalità e termini dei controlli programmati effettuati dall’Autorità competente • Se si tratta di incenerimento/coincenerimento di rifiuti pericolosi: flussi di massa dei rifiuti pericolosi, loro valori calorifici, nonché info sulle loro caratteristiche inquinanti (presenza di floro, cloro, metalli pesanti) MODALITA’ GESTIONALI DEGLI IMPIANTI • Utilizzo delle BAT per attrezzature di stoccaggio, pretrattamento, movimentazione; occorre ottenere il più alto livello di incenerimento

  28. L’Autorità Competenete può sempre imporre prescrizioni particolari sito-specifiche • E’ vietato il coincenerimento di oli contenuti PCB (policlorodifenili)/PCT • Scarico o acque reflue Se in IPPC  l’ente allo scarico deve contenere le caratteristiche quantitative e qualitative dello scarico. Inoltre deve indicare i valori limite di scarico. Infine deve contenre prescrizioni tecniche circa autocontrolli e punti di campionamento. TUTTO IL REGIME AMMINISTRATIVO E AUTORIZZATORIO E’ SOGGETTO AL DLGS 195/2005 SULLA TRASPARENZA E PUBBLICITA’ DEGLI ATTI TUTTI GLI IMPIANTI ESISTENTI SI DEVONO ADEGUARE ENTRO IL 10 NOVEMBRE 2016 SANZIONI  ARRESTO FINO A 2 ANNI PER ESERCIZIO SENZA AUTORIZZAZIONE

  29. Thank you for your attention

  30. … contact GianlucaRusconi Legal and Lobby Officer Via Barberia13 Bologna

  31. Technical information Exposure conditionsLiterature data reports a superficial velocity ranging between 0.1-0.5 m/sec for the abatement of Hg in combustion fumes and contact times ranging between the wide interval of 0.1-60 sec.The set up of superficial velocity interval will be subject to further investigation, nevertheless it can be expected to be higher in case of test using powder sorbent and lower in case of test using pellets, having the latter minor exposed surface.In case of powder carbon, the limit in the velocity is given by the constraints represented by the bed fluidification due to the presence of small particles, with the risk of obstruction of detecting devices. The same criteria have been driving the definition of hydraulic retention times, which resulted to be relatively short for the powder sorbent and longer for the pellets. The flow rate of gas to be tested has been fixed around 20÷70 Nm3/hour, with aspiration system for exhausted gases able to be tuned within the range also my means on a by-pass discharge directed to the mainstream.

More Related