110 likes | 209 Views
Lecture 12: Control-Volume Approach (time-variable). CE 498/698 and ERS 685 Principles of Water Quality Modeling. t. i, l +1. l + 1. D t. i -1 , l. i, l. i +1, l. l. D x. i, l -1. l - 1. forward difference over time. x. i. i- 1. i+ 1. finite difference approximations. t.
E N D
Lecture 12: Control-Volume Approach (time-variable) CE 498/698 and ERS 685 Principles of Water Quality Modeling Lecture 12
t i,l+1 l+1 Dt i-1,l i,l i+1,l l Dx i,l-1 l-1 forward difference over time x i i-1 i+1 finite difference approximations Lecture 12
t i,l+1 l+1 Dt i-1,l i,l i+1,l l Dx i,l-1 l-1 x i i-1 i+1 centered difference over space finite difference approximations Lecture 12
t i,l+1 l+1 Dt i-1,l i,l i+1,l l Dx i,l-1 l-1 x i i-1 i+1 centered difference over space finite difference approximations Lecture 12
t i,l+1 l+1 Dt i-1,l i,l i+1,l l Dx i,l-1 l-1 x i i-1 i+1 finite difference approximations backward difference over space Lecture 12
forward difference over time centered difference over space centered difference over space finite difference approximations FTCS Lecture 12
l+1 l i-1 i i+1 second derivative with space first derivative with time FTCS explicit method Lecture 12
must be positive! Control-Volume Approach Lecture 12
Assuming Q, E, V, k are constant: What if we used backward difference for space derivative? or Courant condition: Solution stability If we have purely advective system: Lecture 12
where and and centered diff: forward diff: backward diff: Weighted Differences Lecture 12
Stability criterion: spatial temporal Solution stability Numerical dispersion: Lecture 12