1 / 38

Experimental and theoretical studies of the structure of binary nanodroplets

Experimental and theoretical studies of the structure of binary nanodroplets. Gerald Wilemski Physics Dept. Missouri S&T. Physics 1 Missouri S&T 25 October 2011. Acknowledgments.

eithne
Download Presentation

Experimental and theoretical studies of the structure of binary nanodroplets

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Experimental and theoretical studies of the structure of binary nanodroplets Gerald Wilemski Physics Dept. Missouri S&T Physics 1 Missouri S&T 25 October 2011

  2. Acknowledgments • Part I – Supersonic nozzle and small angle neutron scattering (SANS) studies of nucleation and nanodroplet structure • Barbara Wyslouzil (OSU) • Reinhard Strey (Köln U), • Christopher Heath and Uta Dieregsweiler (WPI) • Part II – Structure in binary nanodroplets from density functional theory (DFT), lattice Monte Carlo (LMC), and molecular dynamics (MD) simulations • Fawaz Hrahsheh, Jin-Song Li, and Hongxia Ning (Missouri S&T)

  3. OUTLINE • Importance of structure for nanodroplets • Experimental overview • Experimental and theoretical results for binary nanodroplets • SANS • Density Functional Theory • Lattice Monte Carlo • Molecular Dynamics Conclusions

  4. Nucleation occurs all around us… simulation reality

  5. Organic matter is a common component of atmospheric particles Inverted micelle model for aqueous organic aerosols was recently revived. (Ellison, Tuck, Vaida, JGR 1999) Aqueous core + organic layer with polar heads (●)

  6. Why is this important ? • Aerosols affect the Earth’s climate • Aerosols change the properties of clouds • Sites for chemical reactions: heterogeneous chemistry, ozone destruction • Fine particles (<100 nm) affect human health • Particle structure influences particle activity – nucleation and growth rates

  7. Radiative forcing by aerosols: Direct (scattering and absorption) Indirect (affecting cloud formation and cloud properties) Clouds effect the global energy balance. They modify earth’s albedo and LW radiation.

  8. … How are small clusters involved? V L growth Nucleation rates Critical cluster properties

  9. Supersonic nozzle N2(g) H2O(g) N2(g) H2O(l) neutron or X-ray Beam (λ = 0.1 – 2 nm) Dp = 2-20 nm

  10. Experimental Setup at NIST

  11. Is there evidence for structure in larger nanodroplets? Use small angle neutron scattering (SANS) to find out. Well-mixed Core-shell Partly nested or Russian doll

  12. In high q region sphere I q–4 shell structure I q–2 Corevs. Shell scattering using contrast variation [q = (4π/λ)sin(θ/2)]

  13. Evidence for shell scattering Wyslouzil, Wilemski, Strey, Heath, Dieregsweiler, PCCP 8, 54 (2006) H2O – d-butanol/D2O – (h)butanol

  14. Summary • SANS: first direct experimental evidence for Core-Shell structure in aqueous-organic nanodroplets

  15. Density Functional Theory applied to nanodroplets • Treat nanodroplets as large critical nuclei in supersaturated binary vapors. The species densities ρi(r) vary with position r. • As a typical aqueous-organic system use nonideal water-pentanol mixtures modeled as hard sphere - Yukawa fluids (van der Waals mixtures). • Use classical statistical mechanics to find the unstable equilibrium density profiles: Solve Euler-Lagrange Eqs. D. E. Sullivan, J. Chem. Phys. 77, 2632 (1982). X. C.Zeng and D. W. Oxtoby, J. Chem. Phys. 95, 5940 (1991). J.-S.Li and G. Wilemski,PCCP 8, 1266 (2006)

  16. A droplet is a region with higher density than the surrounding fluid The red line shows how the density (ρ) varies with radial position (r) within the droplet. This example is for a pure droplet.

  17. Two types of droplet structureswell-mixed core-shell

  18. Structural Phase Diagram from DFT at 250 K

  19. DFT predicts nonspherical oil( )/water( ) droplets

  20. Why interested in oil/water droplets? Offshore natural gas wells produce high pressure mixtures of methane, water, and higher hydrocarbons (i.e., oils) Gas must be cleaned before pumping to shore and clean-up may involve droplet formation

  21. DFT Summary • DFT: provides a vapor activity “phase diagram” for the nanodroplet structures • bistructural region implies hysteresis for transitions between well-mixed and core-shell structures • Also predicts nonspherical shapes for droplets with immiscible liquids

  22. Lattice Monte Carlo Simulations of Large Binary Nanodroplets • Generalize the lattice MC approach of Cordeiro and Pakula, J. Phys. Chem. B (2005) for pure droplets • Each site of an fcc lattice is occupied by a different particle type (red or blue beads) or by a vacancy. • Beads and vacancies interact repulsively • Ebv = 1, Erv= 2/3, Erb= 0, 0.5, 0.8 • Red beads↔ lower surface tension, higher volatility (~alcohol)Blue beads↔ higher surface tension, lower volatility (~water) • T range: 2.8 ≥kT≥ 2.0; Blue triple point is at kT= 2.8

  23. Ideal binary droplet at kT=2.5 1400 ● +3264 ● (Erb=0)

  24. Nonideal binary droplet at kT=2.5 1400 ● +3264 ● (Erb=0.5) Density profile indicates surface enrichment of red beads.

  25. Core-Shell droplet at kT=2.5 1400 ● +3400 ● (Erb=0.8) Interior depletion and surface enrichment of red beads.

  26. Russian doll droplet at kT=2 1400 ● +3400 ● (Erb=0.8)

  27. Russian doll axial density profile at kT=2 1400 ● +3400 ● (Erb=0.8) 0<r<1

  28. Core-Shell droplet at kT=2.5formed by heating Russian Doll 1400 ● +3400 ● (Erb=0.8)

  29. Antonow’s Rule: Interfacial Tensions and Wetting Transitions γ(bv) = γ(rv) + γ(rb) γ(bv) < γ(rv) + γ(rb) Partial wetting Perfect wetting

  30. By Analogy with Antonow’s Rule and Wetting Transitions Partial wetting Perfect wetting heat cool Russian doll Core-shell γ(bv) < γ(rv) + γ(rb) γ(bv) = γ(rv) + γ(rb)

  31. Cool the Core-Shell droplet to observe the dewetting transition 1400 ● +3400 ● (Erb=0.8) kT=2.4 kT=2.5 The backside is more evenly covered. There is a large dewetted patch; the backside is evenly covered.

  32. Cool the Core-Shell droplet to observe the dewetting transition 1400 ● +3400 ● (Erb=0.8) kT=2.3 kT=2.2 As the temperature is reduced further, the droplet elongates.

  33. Cool the Core-Shell droplet to observe the dewetting transition 1400 ● +3400 ● (Erb=0.8) T=2.0 kT=2.0 kT=2.1 At the lowest temperatures dewetting and elongation are pronounced.

  34. LMC Summary • LMC: the core-shell - Russian doll structural change is a reversible wetting-dewetting transition that modulates the shape of the nanodroplet • May ultimately be a cause of droplet fission ? • The RD droplet resembles the nonspherical structure found with DFT for oil/water droplets

  35. Molecular Dynamics (MD) • Solve Newton’s equations of motion for large numbers of interacting molecules • Time step = 1 or 2 fs (10-6 ns) • Average over 2 ns long trajectories to calculate properties of interest

  36. MD of nonane/water droplet The water droplet partly emerges from the oil droplet. Nonane molecules (blue-green) surround a droplet of water (red-white). initial final

  37. Double click on the slide to see the simulation.

  38. Grand Summary • SANS: experimental evidence for Core-Shell structure of aqueous-organic nanodroplets • DFT: vapor activity “phase diagram” for CS and well-mixed nanodroplet structures • DFT: nonspherical droplet shapes • LMC: core-shell - Russian doll structural transition changes the shape of the nanodroplet • MD: realistic simulations of droplets with large numbers of molecules

More Related