1 / 31

Ch.1. Elementary Quantum Chemistry

Ch.1. Elementary Quantum Chemistry. References (on-line) A brief review of elementary quantum chemistry http://zopyros.ccqc.uga.edu/lec_top/quantrev.bak Wikipedia ( http://en.wikipedia.org ) Search for Schrodinger equation, etc.

elam
Download Presentation

Ch.1. Elementary Quantum Chemistry

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Ch.1. Elementary Quantum Chemistry • References (on-line) • A brief review of elementary quantum chemistry • http://zopyros.ccqc.uga.edu/lec_top/quantrev.bak • Wikipedia (http://en.wikipedia.org) • Search for Schrodinger equation, etc. • Molecular Electronic Structure Lecturewww.chm.bris.ac.uk/pt/harvey/elstruct/introduction.html

  2. The Schrödinger equation The ultimate goal of most quantum chemistry approach is the solution of the time-independent Schrödinger equation. (1-dim) Hamiltonian operator  wavefunction (solving a partial differential equation)

  3. Postulate #1 of quantum mechanics • The state of a quantum mechanical system is completely specified by the wavefunction or state function that depends on the coordinates of the particle(s) and on time. • The probability to find the particle in the volume element located at r at time t is given by . (Born interpretation) • The wavefunction must be single-valued, continuous, finite, and normalized (the probability of find it somewhere is 1). • = <|> Probability density

  4. Postulate #2 of quantum mechanics • Once is known, all properties of the system can be obtained • by applying the corresponding operators to the wavefunction. • Observed in measurements are only the eigenvalues a which satisfy • the eigenvalue equation Schrödinger equation: Hamiltonian operator  energy with (Hamiltonian operator) (e.g. with )

  5. Postulate #3 of quantum mechanics • Although measurements must always yield an eigenvalue, • the state does not have to be an eigenstate. • An arbitrary state can be expanded in the complete set of • eigenvectors ( as where n . • We know that the measurement will yield one of the values ai, but • we don't know which one. However, • we do know the probability that eigenvalue ai will occur ( ). • For a system in a state described by a normalized wavefunction , • the average value of the observable corresponding to is given by • = <|A|>

  6. The Schrödinger equation for atoms/molecules

  7. Atomic units (a.u.) • Simplifies the Schrödinger equation (drops all the constants) • (energy) 1 a.u. = 1 hartree = 27.211 eV = 627.51 kcal/mol, • (length) 1 a.u. = 1 bohr = 0.52918 Å, • (mass) 1 a.u. = electron rest mass, • (charge) 1 a.u. = elementary charge, etc. (before) (after)

  8. Born-Oppenheimer approximation • Simplifies further the Schrödinger equation (separation of variables) • Nuclei are much heavier and slower than electrons. • Electrons can be treated as moving in the field of fixed nuclei. • A full Schrödinger equation can be separated into two: • Motion of electron around the nucleus • Atom as a whole through the space • Focus on the electronic Schrödinger equation

  9. Born-Oppenheimer approximation (before) (electronic) (nuclear) E = (after)

  10. Electronic Schrödinger equation in atomic unit

  11. Antisymmetry and Pauli’s exclusion principle • Electrons are indistinguishable. Probability doesn’t change. • Electrons are fermion (spin ½).  antisymmetric wavefunction • No two electrons can occupy the same state (space & spin).

  12. = = Variational principle • Nuclei positions/charges & number of electrons in the molecule • Set up the Hamiltonial operator • Solve the Schrödinger equation for wavefunction , but how? • Once  is known, properties are obtained by applying operators • No exact solution of the Schrödinger eq for atoms/molecules (>H) • Any guessed trial is an upper bound to the true ground state E. • Minimize the functional E[] by searching through all acceptable • N-electron wavefunctions

  13. but not antisymmetric! Many-electron wavefunction: Slater determinant • Impossible to search through all acceptable N-electron wavefunctions • Let’s define a suitable subset. • N-electron wavefunctionaprroximated by a product ofN one-electron • wavefunctions(hartree product) • It should be antisymmetrized ( ).

  14. = 0 Slater “determinants” • A determinant changes sign when two rows (or columns) are exchanged. •  Exchanging two electrons leads to a change in sign of the wavefunction. • A determinant with two identical rows (or columns) is equal to zero. •  No two electrons can occupy the same state. “Pauli’s exclusion principle” “antisymmetric” = 0

  15. = ij Hartree-Fock (HF) approximation • Restrict the search for the minimum E[] to a subset of , which • is all antisymmetric products of N spin orbitals (Slater determinant) • Use the variational principle to find the best Slater determinant • (which yields the lowest energy) by varying spin orbitals (orthonormal)

  16. Hartree-Fock (HF) energy

  17. Slater determinant (spin orbital = spatial orbital * spin) Hartree-Fock (HF) energy: Evaluation finite “basis set” Molecular Orbitals as linear combinations of Atomic Orbitals (LCAO-MO) where

  18. where Hartree-Fock (HF) equation: Evaluation • No-electron contribution (nucleus-nucleus repulsion: just a constant) • One-electron operator h (depends only on the coordinates of one electron) • Two-electron contribution (depends on the coordinates of two electrons)

  19. Potential energy due to nuclear-nuclear Coulombic repulsion (VNN) *In some textbooks ESD doesn’t include VNN, which will be added later (Vtot = ESD + VNN). • Electronic kinetic energy (Te) • Potential energy due to nuclear-electronic Coulombic attraction (VNe)

  20. Potential energy due to two-electron interactions (Vee) • Coulomb integral Jij (local) • Coulombic repulsion between electron 1 in orbital i and electron 2 in orbital j • Exchange integral Kij (non-local) only for electrons of like spins • No immediate classical interpretation; entirely due to antisymmetry of fermions > 0, i.e., a destabilization

  21. Hartree-Fock (HF) energy: Integrals

  22. Self-Interaction • Coulomb term J when i = j (Coulomb interaction with oneself) • Beautifully cancelled by exchange term K in HF scheme  0 = 0

  23. Constrained minimization of EHF[SD]

  24. and Hartree-Fock (HF) equation • Fock operator: “effective” one-electron operator • two-electron repulsion operator (1/rij) replaced by one-electron operator VHF(i) • by taking it into account in “average” way Two-electron repulsion cannot be separated exactly into one-electron terms. By imposing the separability, the Molecular Orbital Approximation inevitably involves an incorrect treatment of the way in which the electrons interact with each other.

  25. Self-Consistent Field (HF-SCF) Method • Fock operator depends on the solution. • HF is not a regular eigenvalue problem that can be solved in a closed form. • Start with a guessed set of orbitals; • Solve HF equation; • Use the resulting new set of orbitals • in the next iteration; and so on; • Until the input and output orbitals • differ by less than a preset threshold • (i.e. converged).

  26. Koopman’s theorem • As well as the total energy, one also obtains a set of orbital energies. • Remove an electron from occupied orbital a. Orbital energy = Approximate ionization energy

  27. Koopman’s theorem: Examples

  28. Restricted vs Unrestricted HF

  29. Accurary of Molecular Orbital (MO) theory

  30. Electron correlation • A single Slater determinant never corresponds to the exact wavefunction. • EHF > E0 (the exact ground state energy) • Correlation energy: a measure of error introduced through the HF scheme • EC = E0- EHF (< 0) • Dynamical correlation • Non-dynamical (static) correlation • Post-Hartree-Fock method • Møller-Plesset perturbation: MP2, MP4 • Configuration interaction: CISD, QCISD, CCSD, QCISD(T)

  31. Summary

More Related