1 / 39

MINIMIZING WASTE AMOUNT AND SAVING RESOURCES

MINIMIZING WASTE AMOUNT AND SAVING RESOURCES. Paper production. Chemical composition of wood. 50 % water Solid fraction : 45 % cellulose 25 % hemicellulose 25 % lignin 5 % other. Constituents of wood solid part (1).

elewa
Download Presentation

MINIMIZING WASTE AMOUNT AND SAVING RESOURCES

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MINIMIZING WASTE AMOUNT AND SAVING RESOURCES

  2. Paperproduction

  3. Chemicalcompositionofwood • 50 % water • Solidfraction: • 45 % cellulose • 25 % hemicellulose • 25 % lignin • 5 % other

  4. Constituentsofwoodsolid part (1) • Cellulose (C6H10O5)n, n = 10000 to 14000 naturally, decreasedto 1000-3000 duringpulping • Degreeofpolymerization = n • Acid-hydrolysed • Hemicelluloseconsistsofdifferentsugarunits, branched and amorphous • Ligninishighly-branchedaromaticpolymer • Recalcitrantwaterpollutantin pulp and paperindustry Image: http://www.life.ku.dk/forskning/online_artikler/artikler/marken_en_stor_solfanger.aspx Image: Wikipedia

  5. Constituentsofwoodsolid part (2) • Extractives (hotwater/organicsolvents) • Terpenes, fats, fatty acids and alcohols, waxes and phenols, tannins • Addcolour and odourtowood, influenceitsphysical and mechanicalproperties • Resins – lipophylicextractives (non-polarorganicsolvents) • resin acids, long chain fatty acids, fats and volatile terpenes • Inorganic part • 0.2 to 1.0 % ofwood mass • calcium (40-70%), potassium (10-30%), magnesium (5-10%), iron (up to 10%), and sodiumcompounds

  6. Pulp and paperproductionstages

  7. Waterconsumption: stateofthe art Toproduce 1 t ofpaperwespendthefollowingamountsofwater: • 6 m3inpapermachineshowers • 2 m3forchemicalspreparation • 2 m3forsteamproduction • 2 m3for feed materialssolutions • 1 m3forvacuum pumps sealing • 2 m3incoolingtowers • Total: ca. 15-16 m3for1 t ofpaper

  8. Discharges: stateofthe art • Water used in wood handling/debarking/chipping • Barkhasmoreextractives (incl. phenols) and ligninsthanwood • Digester and evaporator condensates • White waters from screening, cleaning and thickening • Bleach plant washer filtrates • Paper machine white water • Fibre and liquor spills from all sections.

  9. Processwaterrecycle • Decreasesfreshwaterconsumption • Reduceswastewateramount • Producedwasteismoreconcentrated • Whitewater: fibre-enrichedwaterexitingpapermachine • Freshwaterconsumptionis 1-1.5 m3per 1 t ofpaperproduced

  10. Whitewatertreatment • Reducesdissolved and suspendedmatterbuild-upinprocesswater • Allowshigher pulp extractiondegree • UF/NF separatesorganiccompoundsand part ofsalts • Ozonedecomposesorganicmatter and desinfectswater • Wetairoxidationdegradesorganicmatter and desinfects

  11. Pros and consofclosedwatersystems • Advantages: • Decreasedwaterconsumption • Decreasedwasteamounts • Decreasedfibrelosses • Elevatedprocesstemperature • Disadvantages: • Build-upofsolids (dissolved and suspended), clogging • Morecomplicatedprocess • Corrosion • Productqualityissues • Unlesswewanttoiletpaper, freshwaterwouldhavetobeadded at 4 to 7 m3per tonne • Thismeans 2.5 to 5.5 m3pertonne ofwastewater • Elevatedtemperature

  12. Sulphuricacidproduction

  13. Contactreactor • H2SO4productionstages S + O2 SO2 SO2 + ½ O2 SO3 SO3+ H2SO4 H2SO4SO3 H2SO4SO3 + H2O  2 H2SO4 • Uses V2O5catalyst • 96 % conversionofSO2 • Ptismoreeffective, butisquicklypoisoned Image: http://www.dynamicscience.com.au/tester/solutions/chemistry/sulfuricacid.html

  14. Doublecontactreactor • 99.8 % SO2conversion • 0.003 vol. % of SO2in tail gas Image: http://www.greener-industry.org.uk/pages/sulphuric_acid/10SulphuricAcidDouble.htm

  15. Nitricacidproduction

  16. Ostwaldprocess and modifications 4 NH3 (g) + 5 O2 (g) → 4 NO (g) + 6 H2O (g) 2 NO (g) + O2 (g) → 2 NO2 (g) 3 NO2 (g) + H2O (l) → 2 HNO3 (aq) + NO (g) • NO hasverylowsolubility • Absorption NOxwithnitricacidsolution and wateraddition • Altering last phaseofthereaction: 2 NO2 + H2O2 → 2 HNO3 or4 NO2 (g) + O2 (g) + 2 H2O (l) → 4 HNO3 (aq) Image: http://chemistry.need.org/curriculum/fertilizer

  17. Phosphoricacidproduction

  18. Extraction H3PO4 Ca5(PO4)3X + 5 H2SO4 + 10 H2O → 3 H3PO4 + 5 CaSO4·2H2O + HX, X = -OH, -Cl, -Br, -I • CaSO4producedisreferredtoasphosphogypsum Image: http://www.fao.org/docrep/007/y5053e/y5053e0f.htm

  19. Phosphogypsum • Productionofsulphuricacid • Cement • Productionofammoniumsulphate • Productionofcalciumsulphide • Productionofsulphur and lime • Forfurtheruse, phosphogypsum must befreeofradioactiveelements present inmanyphosphateores • Treatingextractionphosphoricacidtoremoveradioactiveelementsmayalsobenecessary

  20. Electrochemicalprocesses

  21. ElectrochemicaldecompositionofNaCl NaCl + H2O NaOH + ½ H2 + ½ Cl2 • Diaphragmprocess • Mercurycellprocess • Membraneprocess

  22. Diaphragmprocess • Graphiteortitaniumanode, ironcatode • Diaphragm: asbestosfibresinpolymer (e.g. PTFE) matrix, resistsmigrationof OH-to Cl2-producing compartment • Product: 12 % NaOH, 16 % NaCl • Uponevaporation and crystallisation: 50 % NaOH, 1 % NaCl • Relativelylowvoltage, requireslesscleaninputbrine • Asbestos-associatedhazards, diaphragmcloggingbyCa/Mg, doesnotproducecleanNaOH Image: http://www.chemguide.co.uk/inorganic/group7/diaphragmcell.html

  23. Mercurycellprocess • Carbonanode, liquidHgcathode • Suppresseshydrogenproduction (req. 1.7-1.85 V overvoltage, actual – 1.2 V) • Produces 50 % NaOHwithuptoonly 30 mg L-1NaCl • Mercurytoxicityissues, pollution, formationofHg-organics Hg2+ + Na2S  HgS + 2 Na+ Image: http://electrochem.cwru.edu/encycl/art-b01-brine.htm Na+ + e- + n Hg NaHgn NaHgn + H2O  NaOH + ½ H2 + n Hg

  24. Membraneprocess Image: Wikipedia • Titaniumanode, nickelcatode, perfluorocarboxylic and perfluorosulfonicacid-basedmembrane • Membraneholdsbackanions • 40 % NaOHwithupto 50 mg L-1NaClproduced

  25. Currenttrends • Presently, themajorityofproductionswitchestomembraneprocess • Asbestos and mercurycompoundspollutionprevention • Qualityofproductunchanged Image: http://electrochem.cwru.edu/encycl/art-b01-brine.htm

  26. Ultra-low CO2steelmaking (ULCOS)

  27. Topgasrecyclingblastfurnace • Upto 26 % carboninputsaving • Upto 15 % CO2emissionreduction • Goal: 50 % CO2emissionsreductionby 2020 Image: http://www.ulcos.org/en/docs/Ref25%20-%20ULCOSpublic.pdf

  28. Surfacetreatmentinmetallurgy

  29. Surfacecoatingprocess • Stages • Degreasingwithsurfactantsolution • Surfactantsolutionremoval • Electrolyticsurfacecoating (Zn, Cu, Cr, etc.) • Rinsingbaths • Environmentalconcern: wastewaterswithelevatedamountsofmetals, manyofthemcarcinogenic (e.g. Ni, Cr6+) • Solution: precipitationashydroxides and sulphides • Reductionissometimesrequiredbeforeprecipitation (e.g. Cr6+ Cr3+) Image: http://www.protocase.com/products/mcf_chemconv.php

  30. Minimizingultimatewasteamountsinwastewatertreatment

  31. Paljassaare WastewaterTreatmentPlant, Tallinn Purifiedwaterpumpingstation Aerationtanks Secondaryclarifiers Sandgrids Primaryclarifiers Screens Main pumpingstation Image: Google Methane tank Sludgethickening and silos Wasteactivesludgethickening Mixedsludgestorage Stabilisedsludgestorage Image: https://aktal.tallinnlv.ee/static/Eelnoud/Dokumendid/ddok12933.htm Image: https://oigusaktid.tallinn.ee/?id=3001&aktid=119834

  32. Heatenergyreuse

  33. Heatrecuperationprinciples • Thermalwaste: e.g. cleanwaterwithevenslightlyelevatedtemperaturedischargedintowaterbody (why?) • Hotstreamexitingfromoneprocesscan serve as a heatsourceforanotherone Kansha et al., Chem. Eng. Sci. 65 (2010) 330-334

  34. Clusters

  35. Definition and types • Geographicalconcentrationofinterconnectedbusinesses, suppliers, distributors, etc. • Reasonsofclustersformation: • Commonnaturalresources, orcommonresearchfacilities (e.g. Silicon Valley, USA) • Geographicalproximitytomarkets (e.g. electronicsclusterin Guadalajara, Mexico) • Low-cost labor force • Know-howspreading • Fromcleanerproductionpointofview: • Lessresourcetransportation • Oneprocess’ productmaybeanotherone’s feed (e.g. fertilizerindustry and agriculture, coal and steelproductionin Ruhr, Germany) • Environmentmaybenefitwhenseveralcompanies at a timetryto solve pollutionquestionsintheiroperationregion

  36. Silicon Valley Image: http://www.startup-book.com/tag/cluster/

  37. Barets Sea Region

  38. Summary

  39. Cleanerproductionoptions • Efficientrinsing, incl. countercurrentrinsing • Materialsrecirculation • Heatrecirculation • Processintegration

More Related