1 / 37

Multi Purpose Detectors/Targets for L ow E nergy P article and A stro P hysics ( LEPAP ):

Multi Purpose Detectors/Targets for L ow E nergy P article and A stro P hysics ( LEPAP ):. Stefan Sch ö nert MPIK Heidelberg Journ ées Neutrinos Paris, 27/28. 11. 2003. Status & perspectives for LEPAP. Dark Matter: direct detection of non-baryonic DM.  - properties: Sun :

elia
Download Presentation

Multi Purpose Detectors/Targets for L ow E nergy P article and A stro P hysics ( LEPAP ):

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Multi Purpose Detectors/Targets forLow Energy Particle and AstroPhysics (LEPAP): Stefan Schönert MPIK Heidelberg Journées Neutrinos Paris, 27/28. 11. 2003

  2. Status & perspectives for LEPAP • Dark Matter: • direct detection of non-baryonic DM • -properties: • Sun: •  full picture on osc. •  12 • Reactor: •  13(compl. to accelerator) •  msol² and 12 • DBD: •  Ł, Majorana type •  hierarchy, abs. mass scale • Kinematics: •  absolute mass scale • ’s as probe for astro- and geophysics: • Sun: precision meas. pp, Be7, pep, CNO  stellar evolution • SN: dynamics of core collapse, relic SN • Earth: energetics of the earth Near future: several groups (in Europe) will define future research projects  coherence & complementarity

  3. Eier legende Wollmilchsau (oviparous wool-milk-pig) Is there an experimental method which can do everything ? Isotopes/techniques for future exps.: • He (SUN) (HERON) • Ar (LB, p-decay, SUN,DM) (ICARUS,WARP) • Ne (SUN, SN, DM) (CLEAN) • Xe (DM, DBD, SUN) (XMASS, XENON, EXO,TPC) • Ge (DBD, DM) (GeLN) • Mo (DBD, SUN, SN) (MOON) • Nd(DBD) • In (SUN) (LENS) • Organic LS (SUN, REACTOR, EARTH, SN, p-decay) (KamLAND, BOREXINO, LENA)

  4. Specific requirements (beyond low-background) • DBD: • energy resolution • single site vs. extended evts. • tracking • daughter tagging • DM: • low threshold • annual modulation • event-by-event discr. (recoil vs. ionization) • Solar-: • Bq/m3 impurities • tag • target mass > 10 t • SN dynamics: • target mass 30kt • tag Requirements sometimes orthogonal!

  5. “A Multi-Purpose Matrix” obviously non-diagonal Xe Ge Mo LS Ar DMxx - - ? DBDxxx - - Solarx ? xx x SN - - xxx Geo - - - x- p-dec. - - - xx LBL- - - - x • Matrix obviously incomplete • No weight factor for competiveness • Not included the most successful multi-purpose detector SK

  6. Ionisation Electron/nuclear recoil Xe+ Excitation +Xe Xe2+ +e- (recomb- ination) Smith, IDM2002 Xe* Xe** + Xe +Xe Xe2* 175nm 175nm Triplet Singlet 3ns 27ns 2Xe 2Xe ElectricField Xe EL UV light LXe e- Xe+ SC UV light Xe for DM • Discrimination ionizing vs. recoil events by • Pulse shape of scintillation light • Electroluminescence / Scintillation

  7. Xe for DM Single phase detectors “pragmatic approach” • Zeplin 1: • Discrimination recoil/ionization via pulse shape • XMASS (100 kg) Reduction of background, self shielding

  8. Xe for DM – XMASS 100kg Low BG PMT 238U 1.8x10-2Bq 232Th 6.9x10-3Bq 40K 1.4x10-1Bq 60Co 5.5x10-3Bq

  9. Xe for DM - XMASS • “pragmatic approach”: • Single phase detector • Minimizing external background by self shielding • Minimizing internal background by purification • Pulse shape discrimination? 800kg detector 80cm dia.

  10. Xe for DM – XMASS 800 kg external g ray (60cm, 346kg) external g ray (40cm, 100kg ) • Dominant contribution is from PMT • Assuming further 1/10 reduction of PMTs BG /kg/day/keV 2n2b, 8x1021 yr 7Be pp Dark matter (10-8 pb, 50GeV, 100 GeV)

  11. Xe for DM – XMASS 800 kg sensitivity Spin independent Seasonal variation spectrum

  12. Xe for DM Two phase detectors: “sophisticated approach” Discrimination recoil vs. ionization: SC & EL • Zeplin 1+i • XMASS (2-Phase) • XENON Gas ~1μs anode grid Drift Time e- E Liquid ~40ns g-ray cathode

  13. 10 ton detector External g ray BG only (c.f. dru=/kg/day/keV) Total vol. 10cm wall cut 20cm 30cm (FV 2.2t) 30cm + ½ PMT cut Eff. @300keV~50% Xe for DBD - XMASS XMASS 10t too small for DBD: self shielding at Qenergies insufficient

  14. Symbolically… Xe for DBD - XMASS Moriyama, NOON03

  15. Xe for DBD - XMASS Put PMT away Water shield Xe vessel + wavelength shifter Double focus mirror Water shield Scintillation light Xe vessel + wavelength shifter PMTs

  16. Xe for DBD – EXO“very sophisticated approach” EXO: Scintillation & Charge & Ba-tagging

  17. Xe for Solar- Detector with ~20t (10t fid. Vol) 2nbbdecay of 136Xe t1/2 theory= 8 x 1021 y sin22q = 0.77  0.03(stat.+SSM) ~1/100 reduction needed

  18. Ge for DBD • Q(76Ge) = 2.039 MeV • 5 detectors operating @ LNGS • 10.96 kg active mass (86% enriched) • 125.5 mol of 76Ge t1/20n> 1.9  1025 y mee < 0.35 eV (90% c.l.) Heidelber-Moscow Collaboration: H.V. Klapdor-Kleingrothaus, A. Dietz, L. Baudis, G. Heusser, I.V. Krivosheina, S. Kolb, B. Majorovits, H. Paes, H. Strecker, V. Alexeev, A. Balysh, A.Bakalyarov, S.T. Belyaev, V.I. Lebedev, and S. Zhukov Eur. Phys. J. A 12 (2001) 147

  19. 76Ge: sensitivity, exposure and background 0.0001 0.001 0.01 0.06 / (kg year keV) HEIDELBERG-MOSCOW Collaboration, Eur. Phys. J. A 12 (2001) 147: M·T = 35.5 kg y, b = 6 ·10-2 (kg y keV), DE ~ 4.2 keV Sensitivity (with bgd): mee (b DE / M T)1/4

  20. Ge for DBD – “pragmatic approach” Ge in liquid nitrogen/argon Background in HD-M/IGEX dominated by external impurities  Strategy to improve sensitivity (“pragmatic approach”): reduction of background: 2 ·10-1 / kg y keV (@2040 keV)  10-4/kg y keV (operation of “naked” Gediodes in liquid nitrogen/argon Increase of mass step by step  100 kg • New Initiative at • MPIK Heidelberg: (H. Heusser, W. Hofmann, K.T. Knoepfle, S. Schönert, B. Schwingenheuer, H. Simgen) • Univ. Tuebingen • INR/ITEP • Open for new partners : France ??? LOI to LNGS in spring

  21. New concept under study “somewhat sofisticated approach”: Ge in liquid Ar – new ideas • Replace LN (LN=0.8 g/cm³, 77 K) by LAr (LN=1.4 g/cm³, 87 K)  LAr/ LN (2.615 MeV) = 0.62 • Scintillation yield: 40,000 photons / MeV  Active shielding medium! (4 x organic liquid scintillator) Emission in XUV (~130 nm) • Wavelength shifting required : Organic WLS and/or Xe addition • Essential for cosmogenic activities: Co-60, Ge-68, … • What’s about Ar-39, Ar-42 ?

  22. LN2 shield against external background radiation LNGS: ~ 107 /m²/d (2.6 MeV ) ~6 m 10-4 (kg keV y) -1 LN2

  23. Space @ LNGS ~14 m 14.80 m

  24. How small could a tank be? • Lead layer submersed in LAr • 232Th activity of lead  tank Ø • Preliminary results 30Bq/kg 

  25. Bgd. in LAr: example 42Ar 42Ar / natAr = 3·10-21 (30 Bq/kg) [Barabash et al., LAr-TPC @ LNGS]

  26. Wavelength shifter Reflector (VM2000) 42Ar: no vs. active suppression , 1,2 No issue for DBD even without active suppression!

  27. Active suppression of internal bgd: example 60Co • Cosmogenic activities: • Production after completion of crystal growth • Exposure to cosmic rays above ground for 10 days: 0.18 Bq/kg [GENIUS]

  28. , Wavelength shifter Reflector (VM2000) Reduction factor ~100 60Co: no vs. active suppression

  29. External bgd: example 2.615 MeV gamma 232Th (208Tl) in lead shield Flux from rocks(0.5 Bq / kg) and concrete (5 Bq / kg) @ LNGS: 3.5 ·107 / (m² d) [BOREXINO, Laubenstein] New lead for shielding under study with GEMPI @ LNGS: <30 Bq / kg

  30. Wavelength shifter Reflector (VM2000) 232Th (208Tl): no vs. active suppr.  Lead Simulation for 30 Bq/kg, inner-Ø: 2m, height: 2 m

  31. Ge for DM • Conventional diodes (“pragmatic approach”): no event-by-event discrimination  reduction of background  annual modulation signal (mass!) • Cryo-detectors (“sophisticated approach”: Edelweiss, CDMS): event-by-event discr. heat Thermometer (NTD Ge) Ge Crystal T~20mK ionization

  32. Ge for DM – next generation cryogenic detectors

  33. Ge for DM - GeLN Charge read-out only 300 kg y, 1E-3/ kg y keV Baudis et al. NIM A 426 (1999) 425 GENIUS (12 m diameter)

  34. Ge for DBD – potential of cryodetectors EDELWEISS: identification of alphas by their anomalous quenching factor

  35. Conclusion: Multi-Purpose Detectors for DM/DBD/SOL ? • Xe: DM-det.  DBD-det.  Solar-det. Solar-det  DM-det (isotope separation) • Ge: DBD-det  DM-det (convent./cryo.)  Multi-Purpose Targets!Appealing, since technological and experimental aspects similar

  36. Bob Lanou LowNu2003: To quote from a great philosophe Francaise: “MIEUX VAUT FAIRE UNE CHOSE BIEN PLUTOT QUE D’EN FAIRE PLUSIEUR MOINS BIEN.” Advanced genetic engeneering: Eier legende Wollmilchsau (oviparous wool-milk-pig) Catherine Deneuve in “Belle de Jour” Question of style ….

More Related