1 / 30

Section 5.1 Fundamental Identities

Chapter 5 Trigonometric Identities. Section 5.1 Fundamental Identities. Section 5.2 Verifying Identities. Section 5.3 Cos Sum and Difference. Section 5.4 Sin & Tan Sum and Dif. Section 5.5 Double-Angle Identities. Section 5.6 Half-Angle Identities. Section 5.1 Fundamental Identities.

elkan
Download Presentation

Section 5.1 Fundamental Identities

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 5Trigonometric Identities Section 5.1 Fundamental Identities Section 5.2 Verifying Identities Section 5.3 Cos Sum and Difference Section 5.4 Sin & Tan Sum and Dif Section 5.5 Double-Angle Identities Section 5.6 Half-Angle Identities

  2. Section 5.1 Fundamental Identities • Review of basic Identities • Negative-Angle Identities • Fundamental Identities

  3. y r x r y x sin θ = cos θ = tan θ = Hypotenuse = r opposite side = y θ A adjacent side = x

  4. r y r x x y csc θ = sec θ = cot θ = B Hypotenuse = r opposite side = y θ A C adjacent side = x

  5. The Reciprocal Identities sin £ = csc £ = cos £ = sec £ = tan £ = cot £ = 1 csc £ 1 sin £ 1 sec £ 1 cos £ 1 cot £ 1 tan £

  6. The quotient Identities tan £ = = cot £ = = sin £ cos £ y x x y cos £ sin £

  7. The Negative-Angle Identities sin(-£) = - sin £ cos(-£) = cos £ tan(-£) = - tan £

  8. x2 + y2 = r2 • or • cos2θ + sin2θ = 1 r2 r2 r2 r θ y x This is our first Pythagorean identity

  9. r θ y x Pythagorean identities • cos2θ + sin2θ 1 • or • 1 + tan2θ = sec2θ • or • tan2θ + 1 = sec2θ = cos2θ cos2θ cos2θ

  10. r θ y x Pythagorean identities • cos2θ + sin2θ 1 • or • cot2θ + 1 = csc2θ • or • 1 + cot2θ = csc2θ = sin2θ sin2θ sin2θ

  11. Section 5.2 Verifying Identities • Verify Identities by Working with One Side • Verify Identities by Working with Two Sides

  12. Hints for Verifying Identities • Learn the fundamental identities and their equivalent forms. • Simplify using sin and cos. • Keep in mind the basic algebra applies to trig functions. • You can always go down to x, y, and r

  13. Section 5.3 Cos Sum & Difference • Difference Identity for Cosine • Sum Identity for Cosine • Co-function Identities • Applying the Sum and Difference Identities

  14. Cosine of the Sum or Difference cos(A + B) = cos A cos B – sin A sin B cos(A - B) = cos A cos B + sin A sin B

  15. Co-function Identities sin (90à - £à) = cos £à cos (90à - £à) = sin £à tan (90à - £à) = cot £à csc (90à - £à) = sec £à sec (90à - £à) = csc £à cot (90à - £à) = tan £à

  16. Section 5.4 Sine and TangentSum and Difference Identities • Sum Identity for Sine • Difference Identity for Sine • Applying the Sum and Difference Identities for Sine

  17. Sine of the Sum or Difference sin(A + B) = sin A cos B + cos A sin B sin(A - B) = sin A cos B - cos A sin B

  18. Tangent of the Sum or Difference tan (A + B) = tan (A - B) = tan A + tan B 1 – tan A tan B tan A - tan B 1 + tan A tan B

  19. Section 5.5 Double-Angle Identities • Double-Angle Identities • Verifying Identities with Double Angels • Applying Double-Angle Identities

  20. Double-Angle Identity Cosine cos(2A) = cos(A+A) = cos A cos A – sin A sin A = cos2 A – sin2 A or cos(2A) = cos2 A – sin2 A = (1 - sin2 A) – sin2 A = 1 - 2sin2 A or 2cos2 A - 1

  21. Double-Angle Identity Sine sin(2A) = sin(A+A) = sin A cos A + cos A sin A = 2sin A cos A

  22. Double-Angle Identity Tangent tan 2A = tan (A + A) = = tan A + tan A 1 – tan A tan A 2 tan A 1 – tan2A

  23. Section 5.6 Half-Angle Identities • Half-Angel Identities • Using the Half-Angle Identities

  24. Half-Angle Identity Sine cos 2A = 1 - 2sin2 A -cos 2A -cos 2A 0 = 1 - 2sin2 A – cos 2A - 2sin2 A -2sin2 A -2sin2 A = 1 – cos 2A sin2 A = (cos 2A – 1) 2

  25. Half-Angle Identity Sine (cont.) sin A = sin = ‘ñ ‘ñ 1 – cos 2A 2 1 – cos A 2 A 2

  26. Half-Angle Identity Cosine cos 2A = 2cos2 A - 1 +1 +1 cos 2A + 1 = 2cos2 A 2cos2 A = 1 + cos 2A cos2 A = (1 + cos 2A) 2

  27. Half –Angle Identity Cosine (cont.) cos A = cos = ‘ñ ‘ñ 1 + cos 2A 2 1 + cos A 2 A 2

  28. Half-Angle Identity Tangent tan = = tan = ñ ‘ñ 1 + cos A 2 A 2 1 – cos A 2 sin A 2 A 2 cos ‘ñ A 2 1 – cos A 1 + cos A

  29. Half-Angle Identity Tangent (cont) tan = = tan = = A 2 A 2 A 2 sin 2sin cos A 2 A 2 cos A 2 2cos2 ( ) A 2 sin 2 sin A A 2 ( ) A 2 1 + 2cos 1 + cos A

  30. Half-Angle Identity Tangent (cont) Using the other formula we get: tan = 1 - cos A A 2 sin A

More Related